SENECA

USER MANUAL

SENECA s.r.I.
Via Austria, 26 - 35127 - PADOVA - ITALY
Tel. +39.049.8705355-8705359 Fax. +39.049.8706287
Web site: www.seneca.it
Technical assistance: supporto@seneca.it (IT), support@seneca.it (Other)
Commercial reference: commerciale@seneca.it (IT), sales@seneca.it (Other)

This document is property of SENECA srl. Duplication and reproduction of its are forbidden (though partial), if not authorized. Contents of present documentation refers to products and technologies described in it. Though we strive for reach perfection continually, all technical data contained in this document may be modified or added due to technical and commercial needs; it's impossible eliminate mismatches and discordances completely. Contents of present documentation is anyhow subjected to periodical revision. If you have any questions don't hesitate to contact our structure or to write us to e-mail addresses as above mentioned.

Seneca Z-PC Line module: ZC-16DI-8DO

The module ZC-16DI-8DO:

- acquires 16 single-ended digital signals, it converts them to a digital format (IN 1-16 state) and it counts the input-pulse number (pulse counter for $\operatorname{IN} 1-8$);
- controls 8 digital outputs (OUT1-OUT8), each of them (by MOSFET) actives/deactivates a output load.

General characteristics

> Acquisition of digital signals from sensor: reed, NPN, PNP, proximity, contact, etc...
$>$ Configuration of a filter applied to input signals IN1-IN8 (noise filter) to attenuate the noise overlapped to the digital signals
> Pulse counters for digital signals $\mathrm{IN} 1-\mathrm{IN} 8$, with max frequency equal to 10 kHz , 32bit-registers
> Advanced management of the pulse counters for digital signals IN1-IN8 (for each pulse counter: overflow, preset value and reset/preset command are available)
> Power of 16 sensors using internal supply voltage (Vaux=16V)
> Outputs are available on 8 screw terminals or IDC 10 connectors, to facilitate the connection of 24 V -relays
$>$ It is possible to manage the output state if the interval time of RS485-bus communication failure is greater than a configurable time (up to 25.5 sec): output is kept at the previous value or output is overwritten on register
> It is possible to manage the output state if there is a over-temperature or short-circuited (towards ground)
> Configuration of the module (node) address and baud-rate by Dip-Switches
$>\mathrm{It}$ is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply
> It is possible to switch automatically RS485 to RS232 or vice versa
> CAN interface with CANOpen protocol: max 1Mbps

Features

INPUT	
Number	16
Type	Polarity (EN 61131-2 type 2): sink (pnp)
Equivalent low-passfilter cut-off frequency	Configurable between: 16 Hz and 2.1 kHz
Pulse min duration (ton)	350 μ
Sensor=off (input threshold)	The sensor is detected «off» if: acquired signal voltage between 0 Vdc and 7 Vdc
Sensor=on (input threshold)	The sensor is detected «on» if: acquired signal voltage between 11 Vdc and 30 Vdc
Switching delay	Typical: 1.2ms; max: 3ms
Adsorbed current	3mA (for each input)
Internal supply Vaux	The screw terminals 24-32 (Vaux) supply 16 V with reference to the screw terminal 7-15-23-31 (GND)
OUTPUT	
umber	8
Type	MOSFET (Open source)
Max current through each load	0.5 A . The supplied currents sum through all loads (these currents are inwards with reference to the screw terminals $8-16$): $: 4 \mathrm{~A}$, using a fuse or equivalent protection (if the connection is performed through screw terminals)
	25 mA . The supplied currents sum through all loads (these currents are inwards with reference to the screw terminals $8-16$): $<0.2 \mathrm{~A}$, using a fuse or equivalent protection (if the connection is performed through IDC10 connector)
Max state-switching frequency for each load	2 Hz
MOSFET protection	The MOSFETs are protected against: load short-circuited, overtemperature
MOSFET supply	With reference to the screw terminals 7-15-23-32 (GND), power the MOSFETs by screw terminals 8 or 16 (Vext): $\min 5 \mathrm{~V}$, max30V
MOSFET max energy	40 mJ with inductive load
MOSFET response time	5/2ms
R ${ }_{\text {dson }}$	0.75Ω
Switching delay	$1 \mathrm{~ms} \mathrm{(max)}$
CONNECTIONS	
RS485 interface	IDC10 connector for DIN 46277 rail (back-side panel)
1500 Vac ISOLATIONS ${ }^{\text {a }}$ (Between: power supply, ModBUS RS485, digital outputs	

POWER SUPPLY

Supply voltage	$10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$
Power consumption	Typical: $1.5 \mathrm{~W} ; \mathrm{Max}: 2.5 \mathrm{~W}$

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

MODULE CASE	
Case-type	PBT, black
Dimensions	Width $\mathrm{W}=100 \mathrm{~mm}$, Height $\mathrm{H}=112 \mathrm{~mm}$, Depth D $=35 \mathrm{~mm}$
Terminal board	Removable 4-way screw terminals: pitch 3.5mm, sections 2.5mm
Protection class	IP20 (International Protection)

Input connections

Power on the module with <40 Vdc or <28 Vac voltage supply. These upper limits must not be exceeded to avoid serious damage to the module.

Output connections

Dip-switches table

Power off the module before configuring it by Dip-Switches to avoid serious damage due to electrostatic discharges.

I-8 In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means DipSwitch=1 (ON state).

RS485 Register table

Name	Range	Interpretation of register	R/W	Default	Address
MachinelD	1	MSB, LSB	R		40001
	Id_Code (Module ID)			$0 \times 22 \quad \text { (34 }$ decimal)	Bit [15:8]
	Ext_Rev (Module version)				Bit [7:0]
FWREV	1	Word	R		40002
	Firmware Code				
Command	/	Word	R/W		40201

Reg.40201=0x5Cnn (preset counter values are loaded into pulse counters, using a bit interpretation to mask the inputs): load 40025,40026...40039,40040 into 40009, 40010...40023,40024.
Examples:
$0 \times 5 \mathrm{C} 01$ allows to load PresetCounter1 into PulseCounter1
$0 \times 5 \mathrm{C} 02$ allows to load PresetCounter2 into PulseCounter2
0x5C03 allows to load PresetCounter1 into PulseCounter1 and PresetCounter2 into PulseCounter2 (not
PresetCounter3 into PulseCounter3) and so on
0x5CFF allows to load every PresetCounter into corresponding PulseCounter
Reg.40201=0x5Dnn (pulse counters value are loaded with zero values, using a bit interpretation to mask the inputs)
Examples:
$0 \times 5 \mathrm{D} 01$ allows to load PulseCounter1 with zero value
$0 \times 5 \mathrm{D} 02$ allows to load PulseCounter2 with zero value
0x5D03 allows to load PulseCounter1 and PresetCounter2 with zero value (not PresetCounter3 with zero value) and so on
0x5DFF allows to load every PulseCounter with zero value

Reg.40201=0x5Enn (counter overflows reset, using a bit interpretation to mask the inputs)

Examples:
0x5E01 allows to reset PulseCounter1 overflow
0x5E02 allows to reset PulseCounter2 overflow
0x5E03 allows to reset PulseCounter2 overflow and to reset PulseCounter2 overflow (not to reset PulseCounter3 overflow) and so on
0x5EFF allows to reset every PulseCounter overflow
Reg.40201=0xBAB0 (save data in EEPROM memory)
Reg.40201=0xC1A0 (module reset)
Reg.40201=0x6BAC (the module writes the Dip-Switches-state in reg.40202)

Command aux	Bit R		40202
	These bits aren't used	1	Bit [15:10]
	Dip-Switches "SW1 [4:10]" state. They correspond to the module baud-rate	/	Bit [9:3]
	Dip-Switches "SW1 [1:3]" state. They correspond to the module address	/	Bit [2:0]
Errors			40006
	These bits aren't used	1	Bit [15:8]
	Memory error (EEPROM): $0=$ there isn't; 1 =there is	/	Bit 7
	These bits aren't used	1	Bit [6:4]
	Over-temperature error: $0=$ there isn't; 1 =there is	1	Bit 3
	These bits aren't used	1	Bit [2:0]
Filter[IN1-8] masked	/ / Word		40043
	These bits aren't used	1	Bit [15:8]
	Input [1..8] Filter enable Mask (only 0x00 or 0xFF allowed) $0 \times 00=$ Filter disabled (and Counters $1 . .8$ Enabled) $0 \times F F=$ Filter enabled (and Counters 1..8 Disabled)	0xFF	Bit [7:0]

Filter[IN9-16] masked	1	Word	RO		40044
	These bits aren't used			/	Bit [15:8]
	Filter activation for inputs IN9-IN16 using a bit interpretation to mask the inputs: are always deactivated			0x00	Bit [7:0]
Filter Number Of Samples	From 0 to 255	Word	R/W		40045
	These bits aren't used				Bit [15:8]
	Number of samples for filter			$\begin{aligned} & \hline 0 \times 28 \quad(40 \\ & \text { decimal) } \end{aligned}$	Bit [7:0]
Filter Sup	From 0 to 255	Word	R/W		40046
	These bits aren't used				Bit [15:8]
	Inferior threshold for filter			$0 \times 14 \quad(20$ decimal)	Bit [7:0]
Filter Inf	From 0 to 255	Word	R/W		40047
	These bits aren't used				Bit [15:8]
	Superior threshold for filter			$\begin{aligned} & \hline 0 \times 14 \quad(20 \\ & \text { decimal) } \\ & \hline \end{aligned}$	Bit [7:0]

IL-93
Default equivalent filter value is 100 Hz (cut-off frequency).

Filter functioning

Input filter operates in the following way: the module samples the digital input with a frequency equal to 20 kHz , and some samples are captured (in the following figure there are 9 samples).

Counter of samples=1

time

If counter of samples is greater than (or equal to) reg. 40046 (Filter Sup), input signal is detected as " 1 ".
If counter of samples is less than (or equal to) reg. 40047 (Filter Inf), input signal is detected as " 0 ".
If counter of samples is between reg. 40047 (Filter Inf) and reg. 40046 (Filter Sup), filter value is kept stored at the previous value.

Example: with reference to the previous figure
A) Counter of samples (for superior figure) $=0+1+1+1-1-1-1+1+1-1=1$

If Filter Inf $=2$, Filter $\operatorname{Sup}=4: 1 \geq 4$ is false, $1<2$ is true. So input is detected as "0"
B) Counter of samples (for inferior figure) $=0+1+1+1+1-1-1+1+1+1=5$

If Filter $\operatorname{Inf}=2$, Filter $\operatorname{Sup}=4: 5 \geq 4$ is true, $5<2$ is false. So input is detected as " 1 "

To deactivate the filter, write: reg. $40045=0 \times 01$, reg. $40046=0 \times 00$, reg. $40047=0 \times 00$.

This filter action is described in configuration software as a low pass digital filter, with cut-off frequency from 16 Hz to 2.1 kHz .

Address Parity	Address: from $0 \times 01=1$ to 0xFF=255	MSB, LSB	R/W		40050
	Address for RS485 (address of module/node if parameters are configurated by memory modality)			1	Bit [15:8]
	Parity for RS485: $0=$ no parity; 1 =even; 2=odd			0	Bit [7:0]
Baudrate Delay	Delay: from $0 \times 00=0$ to $0 \times F F=255$	MSB, LSB	R/W		40051
	Baud-rate for RS485 (baud-rate of module/node if parameters are configurated by memory modality): 1=2400; $2=4800 ; 3=9600 ; 4=19200 ; 5=38400 ; 6=57600 ; 7=115200$			38400	Bit [15:8]
	Delay for RS485 (delay of communication response: pauses between the end of Rx message and the start of Tx message)			0	Bit [7:0]
State IN1-IN16		Bit	R		40301
	IN16 state: 0=S16 open; $1=$ S16 closed			,	Bit 15
	IN15 state: $0=$ S15 open; $1=$ S15 closed			1	Bit 14

	IN14 state: $0=$ S14 open; $1=$ S14 closed			1	Bit 13
	IN13 state: $0=$ S13 open; $1=$ S13 closed			1	Bit 12
	IN12 state: $0=$ S12 open; $1=$ S12 closed			1	Bit 11
	IN11 state: $0=$ S11 open; $1=$ S11 closed			1	Bit 10
	IN10 state: $0=$ S10 open; $1=$ S10 closed			1	Bit 9
	IN9 state: $0=$ S9 open; $1=$ S9 closed			1	Bit 8
	IN8 state: $0=$ S8 open; $1=$ S8 closed			1	Bit 7
	IN7 state: $0=$ S7 open; $1=$ S7 closed			1	Bit 6
	IN6 state: $0=$ S6 open; $1=$ S6 closed			1	Bit 5
	IN5 state: $0=$ S5 open; $1=$ S 5 closed			1	Bit 4
	IN4 state: $0=$ S4 open; $1=$ S4 closed			1	Bit 3
	IN3 state: $0=$ S3 open; $1=$ S3 closed			1	Bit 2
	IN2 state: $0=$ S2 open; $1=$ S2 closed			I	Bit 1
	IN1 state: $0=$ S1 open; $1=$ S1 closed			1	Bit 0
State IN1-IN8		Bit	R		40003
	These bits aren't used			1	Bit [15:8]
	IN8 state: $0=$ S8 open; $1=$ S8 closed			1	Bit 7
	IN7 state: $0=$ S7 open; $1=$ S 7 closed			1	Bit 6
	IN6 state: $0=$ S6 open; $1=$ S 6 closed			1	Bit 5
	IN5 state: $0=$ S5 open; $1=$ S 5 closed			I	Bit 4
	IN4 state: $0=$ S4 open; $1=$ S4 closed			1	Bit 3
	IN3 state: $0=$ S3 open; $1=$ S3 closed			1	Bit 2
	IN2 state: $0=$ S2 open; $1=$ S2 closed			1	Bit 1
	IN1 state: $0=$ S1 open; $1=$ S1 closed			1	Bit 0
State IN9-IN16		Bit	R		40004
	These bits aren't used			1	Bit [15:8]
	IN16 state: 0=S16 open; 1=S16 closed			1	Bit 7
	IN15 state: $0=$ S15 open; $1=$ S15 closed			1	Bit 6
	IN14 state: $0=$ S14 open; $1=$ S14 closed			1	Bit 5
	IN13 state: $0=$ S13 open; $1=$ S13 closed			1	Bit 4
	IN12 state: $0=$ S12 open; $1=$ S12 closed			1	Bit 3
	IN11 state: $0=$ S11 open; $1=$ S11 closed			I	Bit 2
	IN10 state: $0=$ S 10 open; $1=$ S 10 closed			1	Bit 1
	IN9 state: $0=$ S9 open; $1=$ S9 closed			/	Bit 0
PulseCounter1 MSW	Between:0; (2^31)-1	U32bit-MSW	R		40009
PulseCounter1 LSW		U32bit-LSW	R		40010
	32-bit pulse counter for input 1				
PresetCounter 1 MSW	Between:0; (2^31)-1	U32bit-MSW	R/W		40025
PresetCounter 1 LSW		U32bit-LSW	R/W		40026
	Preset counter value of PulseCounter1			0	
PulseCounter2 MSW	Between:0; (2^31)-1	U32bit-MSW	R		40011
PulseCounter2 LSW		U32bit-LSW	R		40012
	32-bit pulse counter for input 2				
PresetCounter 2 MSW	Between:0; (2^31)-1	U32bit-MSW	R/W		40027
PresetCounter 2 LSW		U32bit-LSW	R/W		40028
	Preset counter value of PulseCounter2			0	
PulseCounter3 MSW	Between:0; (2^31)-1	U32bit-MSW	R		40013

PulseCounter3 LSW		U32bit-LSW	R		40014
	32-bit pulse counter for input 3				
PresetCounter 3 MSW	Between:0; (2^31)-1	U32bit-MSW	R/W		40029
PresetCounter 3 LSW		U32bit-LSW	R/W		40030
	Preset counter value of PulseCounter3			0	
PulseCounter4 MSW	Between:0; (2^31)-1	U32bit-MSW	R		40015
PulseCounter4 LSW		U32bit-LSW	R		40016
	32-bit pulse counter for input 4				
PresetCounter 4_MSW	Between:0; (2^31)-1	U32bit-MSW	R/W		40031
PresetCounter 4_LSW		U32bit-LSW	R/W		40032
	Preset counter value of PulseCounter4			0	
PulseCounter5 MSW	Between:0; (2^31)-1	U32bit-MSW	R		40017
PulseCounter5 LSW		U32bit-LSW	R		40018
	32-bit pulse counter for input 5				
PresetCounter 5 MSW	Between:0; (2^31)-1	U32bit-MSW	R/W		40033
PresetCounter 5 LSW		U32bit-LSW	R/W		40034
	Preset counter value of PulseCounter5			0	
PulseCounter6 MSW	Between:0; (2^31)-1	U32bit-MSW	R		40019
PulseCounter6 LSW		U32bit-LSW	R		40020
	32-bit pulse counter for input 6				
PresetCounter 6 MSW	Between:0; (2^31)-1	U32bit-MSW	R/W		40035
PresetCounter 6 LSW		U32bit-LSW	R/W		40036
	Preset counter value of PulseCounter6			0	
PulseCounter7 MSW	Between:0; (2^31)-1	U32bit-MSW	R		40021
PulseCounter7 LSW		U32bit-LSW	R		40022
	32-bit pulse counter for input 7				
PresetCounter 7 MSW	Between:0; (2^31)-1	U32bit-MSW	R/W		40037
PresetCounter 7 LSW		U32bit-LSW	R/W		40038
	Preset counter value of PulseCounter7			0	
PulseCounter8 MSW	Between:0; (2^31)-1	U32bit-MSW	R		40023
PulseCounter8 LSW		U32bit-LSW	R		40024
	32-bit pulse counter for input 8				
PresetCounter 8 MSW	Between:0; (2^31)-1	U32bit-MSW	R/W		40039
PresetCounter $8 \text { LSW }$		U32bit-LSW	R/W		40040

	Preset counter value of PulseCounter8			0
Overflow	Bit		40008	
	These bits aren't used	$/$		
	Pulse counter 8 overflow: $0=$ there isn't; $1=$ there is	$/$		
	Pulse counter 7 overflow: $0=$ there isn't; $1=$ there is	$/$		
	Pulse counter 6 overflow: $0=$ there isn't; $1=$ there is	$/$		
	Pulse counter 5 overflow: $0=$ there isn't; $1=$ there is	$/$		
	Pulse counter 4 overflow: $0=$ there isn't; $1=$ there is	$/$		
	Pulse counter 3 overflow: $0=$ there isn't; $1=$ there is	$/$		
	Pulse counter 2 overflow: $0=$ there isn't; $1=$ there is	$/$		
	Pulse counter 1 overflow: $0=$ there isn't; $1=$ there is	$/$		

Errors Out1-8	Bit ${ }^{\text {R }}$		40007
	These bits aren't used	1	Bit [15:8]
	Output 8 over-temperature error or short-circuited: 0=there isn't; $1=$ there is	1	Bit 7
	Output 7 over-temperature error or short-circuited: 0=there isn't; $1=$ there is	1	Bit 6
	Output 6 over-temperature error or short-circuited: 0=there isn't; $1=$ there is	1	Bit 5
	Output 5 over-temperature error or short-circuited: 0=there isn't; $1=$ there is	1	Bit 4
	Output 4 over-temperature error or short-circuited: 0=there isn't; $1=$ there is	1	Bit 3
	Output 3 over-temperature error or short-circuited: 0=there isn't; $1=$ there is	1	Bit 2
	Output 2 over-temperature error or short-circuited: 0=there isn't; $1=$ there is	1	Bit 1
	Output 1 over-temperature error or short-circuited: 0=there isn't; $1=$ there is	1	Bit 0
Errors Out1-8 behavior	Bit ${ }^{\text {Bit }}$ R/W		40041
	These bits aren't used	1	Bit [15:8]
	Output 8 behavior if bit40007.7=1: $0=$ output is kept at the previous value; $1=$ bit 40042.7 is overwritten on bit 40005.7 and reg. 00024	1	Bit 7
	Output 7 behavior if bit40007.6=1: $0=$ output is kept at the previous value; $1=$ bit40042.6 is overwritten on bit40005.6 and reg. 00023	1	Bit 6
	Output 6 behavior if bit $40007.5=1: 0=$ output is kept at the previous value; $1=$ bit 40042.5 is overwritten on bit40005.5 and reg. 00022	1	Bit 5
	Output 5 behavior if bit40007.4=1: $0=$ output is kept at the previous value; $1=$ bit40042.4 is overwritten on bit40005.4 and reg. 00021	1	Bit 4
	Output 4 behavior if bit40007.3=1: $0=$ output is kept at the previous value; $1=$ bit 40042.3 is overwritten on bit40005.3 and reg. 00020	1	Bit 3
	Output 3 behavior if bit40007.2=1: $0=$ output is kept at the previous value; $1=$ bit40042.2 is overwritten on bit40005.2 and reg. 00019	1	Bit 2
	Output 2 behavior if bit40007.1=1: $0=$ output is kept at the previous value; $1=$ bit40042.1 is overwritten on bit40005.1 and reg. 00018	1	Bit 1

	Output 1 behavior if bit40007.0=1: $0=$ =utput is kept at the previous value; $1=$ bit40042.0 is overwritten on bit40005.0 and reg.00017		1	Bit 0
Errors Out1-8 safe values	$/$	Bit	R/W	
	These bits aren't used	$/$	40042	
	Output 8 safe value: $0 ; 1$	0	Bit [15:8]	
	Output 7 safe value: $0 ; 1$	0	Bit 7	
	Output 6 safe value: $0 ; 1$	0	Bit 5	
	Output 5 safe value: $0 ; 1$	0	Bit 4	
	Output 4 safe value: $0 ; 1$	0	Bit 3	
	Output 3 safe value: $0 ; 1$	0	Bit 2	
	Output 2 safe value: $0 ; 1$	0	Bit 1	
	Output 1 safe value: $0 ; 1$	0	Bit 0	

The «Coil Status»-type registers used for ZC-16DI-8DO module are shown in the following table:

Name	Range	Interpretation of register	R/W	Default	Address
State IN1	0-1	Bit	R		00001
	IN1 state: $0=$ S1 open; $1=$ S1 closed			1	
State IN2	0-1	Bit	R		00002
	IN2 state: $0=$ S2 open; $1=$ S2 closed			1	
State IN3	0-1	Bit	R		00003
	IN3 state: $0=$ S3 open; $1=$ S3 closed			1	
State IN4	0-1	Bit	R		00004
	IN4 state: $0=$ S4 open; $1=$ S4 closed			1	
State IN5	0-1	Bit	R		00005
	IN5 state: $0=$ S5 open; $1=$ S 5 closed			1	
State IN6	0-1	Bit	R		00006
	IN6 state: $0=$ S6 open; $1=$ S6 closed			1	
State IN7	0-1	Bit	R		00007
	IN7 state: $0=$ S7 open; $1=$ S 7 closed			1	
State IN8	0-1	Bit	R		00008
	IN8 state: $0=$ S8 open; $1=$ S8 closed			1	
State IN9	0-1	Bit	R		00009
	IN9 state: $0=$ S9 open; $1=$ S9 closed			1	
State IN10	0-1	Bit	R		00010
	IN10 state: $0=$ S10 open; $1=$ S10 closed			1	
State IN11	0-1	Bit	R		00011
	IN11 state: $0=$ S11 open; $1=$ S11 closed			1	
State IN12	0-1	Bit	R		00012
	IN12 state: $0=$ S12 open; $1=$ S12 closed			1	
State IN13	0-1	Bit	R		00013
	IN13 state: $0=$ S13 open; $1=$ S13 closed			1	
State IN14	0-1	Bit	R		00014
	IN14 state: $0=$ S14 open; $1=$ S14 closed			1	
State IN15	0-1	Bit	R		00015
	IN15 state: $0=$ S15 open; $1=$ S15 closed			1	
State IN16	0-1	Bit	R		00016
	IN16 state: $0=$ S16 open; $1=$ S16 closed			1	
State OUT1	0-1	Bit	R/W		00017
	Output OUT1 state: $0=$ LOAD1 is deactivated (there is no current through LOAD1); 1=LOAD1 is activated (there is current through LOAD1)			0	
State OUT2	0-1	Bit	R/W		00018
	Output OUT2 state: $0=$ LOAD2 is deactivated (there is no current through LOAD2); $1=$ LOAD2 is activated (there is current through LOAD2)			0	
State OUT3	0-1	Bit	R/W		00019
	Output OUT3 state: $0=$ LOAD3 is deactivated (there is no current through LOAD3); 1=LOAD3 is activated (there is current through LOAD3)			0	
State OUT4	0-1	Bit	R/W		00020
	Output OUT4 state: $0=$ LOAD4 is deactivated (there is no current through LOAD4); $1=$ LOAD4 is activated (there is current through LOAD4)			0	
State OUT5	0-1	Bit	R/W		00021
	Output OUT5 state: $0=$ LOAD5 is deactivated (there is no current through LOAD5); $1=$ LOAD5 is activated (there is current through LOAD5)			0	

State OUT6	0-1	Bit	R		00022
	Output OUT6 state: $0=$ LOAD6 is deactivated (there is no current through LOAD6); $1=$ LOAD6 is activated (there is current through LOAD6)			0	
State OUT7	0-1	Bit	R		00023
	Output OUT7 state: $0=$ LOAD7 is deactivated (there is no current through LOAD7); $1=$ LOAD7 is activated (there is current through LOAD7)				
State OUT8	0-1	Bit			00024
	Output OUT8 state: $0=$ LOAD8 is deactivated (there is no current through LOAD8); $1=$ LOAD8 is activated (there is current through LOAD8)				

The «Input Status»-type read only registers used for ZC-16DI-8DO module are shown in the following table:

Name	Range		R/W	Default	Address
State IN1	0-1	Bit	R		10001
	IN1 state: $0=$ S1 open; $1=$ S 1 closed			1	
State IN2	0-1	Bit	R		10002
	IN2 state: $0=$ S2 open; $1=$ S2 closed			1	
State IN3	0-1	Bit	R		10003
	IN3 state: 0=S3 open; 1=S3 closed			1	
State IN4	0-1	Bit	R		10004
	IN4 state: 0=S4 open; 1=S4 closed			1	
State IN5	0-1	Bit	R		10005
	IN5 state: 0=S5 open; 1=S5 closed			1	
State IN6	0-1	Bit	R		10006
	IN6 state: 0=S6 open; 1=S6 closed			1	
State IN7	0-1	Bit	R		10007
	IN7 state: $0=$ S7 open; $1=$ S7 closed			1	
State IN8	0-1	Bit	R		10008
	IN8 state: 0=S8 open; 1=S8 closed			1	
State IN9	0-1	Bit	R		10009
	IN9 state: $0=$ S9 open; 1=S9 closed			1	
State IN10	0-1	Bit	R		10010
	IN10 state: $0=$ S10 open; $1=$ S10 closed			1	
State IN11	0-1	Bit	R		10011
	IN11 state: $0=$ S11 open; $1=$ S11 closed			1	
State IN12	0-1	Bit	R		10012
	IN12 state: $0=$ S12 open; $1=$ S12 closed			1	
State IN13	0-1	Bit	R		10013
	IN13 state: $0=$ S13 open; $1=$ S13 closed			1	
State IN14	0-1	Bit	R		10014
	IN14 state: $0=$ S14 open; $1=$ S14 closed			1	
State IN15	0-1	Bit	R		10015
	IN15 state: $0=$ S15 open; $1=$ S15 closed			1	
State IN16	0-1	Bit	R		10016
	IN16 state: $0=$ S16 open; $1=$ S16 closed			1	
State OUT1	0-1	Bit	R		10017
	Output OUT1 state: $0=$ LOAD1 is deactivated (there is no current through LOAD1); $1=$ LOAD1 is activated (there is current through LOAD1)			0	
State OUT2	0-1	Bit	R		10018

LEDs for signalling

In the front-side panel there are 28 LEDs and their state refers to important operating conditions of the module.

LED	LED status	Meaning
PWR	Constant light	The power is on
FAIL	Constant light	The module received a data packet through RS232 port
	Blinking light	The module has at least one of the errors described in RS485 Registers table (at least one output over-temperature error or short-circuited)
ERR (TX)	Constant light	Verify if the bus connection is corrected
	Blinking light	The module sent a data packet
	Blinking light	The module received a data packet
	Constant light	Verify if the bus connection is corrected
$1-16$	Constant light	IN1-16 state equal to «1»
	No light	IN1-16 state equal to «0» (if the power is on)
	OUT1-8 state equal to «1»	

Easy-SETUP

To configure the Seneca Z-PC Line modules, it is possible to use Easy-SETUP software,
Free-downloadable from the www.seneca.it; the configuration can be performed by RS232 or RS485 bus communication.

Seneca Z-PC Line module: ZC-16DI-8D0 (CANOpen)

In this chapter are described the features of ZC-16DI-8DO module, based on CANOpen protocol.
NOTE: "0x" means an exadecimal number interpretation.

CANOpen features

TECHNICAL DATA	
Baud rate	20, 50, 125, 250, 500, 800, 1000 kbps
Counters nr/type	8 (32bit) from input 1..8
Max frequency for counters	10 kHz
Typical ON/OFF delay	1 ms (with filter disabled) for inputs 1.25 ms for outputs
CANOpen TECHNICAL DATA	
	slave
NMT	Node guarding, heartbeat
Node ID	HW switch or software
Number of PDO	5 TX, 1 RX
PDO modes	Event triggered, Sync (cyclic), Sync (acyclic)
PDO mapping	Variable
PDO linking	supported
Number of SDO	1 server
Error message	yes
Supported application	Cia 301 v4.02
Layer	Cia 401 v2.01

CANOpen TPDOs transmission type supported

Object Value 0x180x Sub 2	TRANSMISSION TYPE
0	Synchronous - acyclic
From 1 to 240	Synchronous - cyclic
255	Asynchronous

CANOpen PDOs mapping

OBJECTS FOR DEFAULT MAPPING				
PDO NR	COB-ID	MAPPED OBJECTS	INDEX	SUBINDEX
RPDO1	0x200 + Nodeld	Digital output [1..8]	0x6200	1
		Digital input [1..8]	0x6000	1
	0x40000180	Digital input [9..16]	0x6000	2
TPDO1	Nodeld	Overflow counter [1..8]	0x6000	3
TPDO5	$\begin{gathered} 0 \times 40000280 \\ +\quad+ \\ \text { Nodeld } \end{gathered}$	Counter 1 value Counter 2 value	0×2210 0×2210	2
TPDO6	0×40000380 $\stackrel{+}{+}$	Counter 3 value Counter 4 value	$\begin{aligned} & 0 \times 2210 \\ & 0 \times 2210 \end{aligned}$	3 4
TPDO7	$\begin{gathered} 0 \times 40000480 \\ + \\ \text { Nodeld } \end{gathered}$	Counter 5 value Counter 6 value	$\begin{array}{r} 0 \times 2210 \\ 0 \times 2210 \\ \hline \end{array}$	5
TPDO8	$\begin{gathered} 0 \times 40000300 \\ + \\ \text { Nodeld } \\ \hline \end{gathered}$	Counter 7 value Counter 8 value	$\begin{aligned} & 0 \times 2210 \\ & 0 \times 2210 \end{aligned}$	7

Note that TPDO COB-ID must start with 0×4.

CANOpen emergency message

The Emergency message is composed by:
2 bytes of EEC (Emergency error code)
1 bytes of ER (Error register)
4 bytes MEF (Manufacturer error filled objects) (0x1002)

EMERGENCY MESSAGE							
BYTE 0	BYTE 1	BYTE 2	BYTE 3	BYTE 4	BYTE 5	BYTE 6	
EER		ER	MEF				

EEC	
CODE	DESCRIPTION
0×0000	No error
0×1000	Generic error
0×4201	CPU temperature over T_HIGH_HIGH
0×4202	CPU temperature over T_HIGH
0×4203	CPU temperature under T_LOW
0×8110	Communication Can Overrun
0×8120	Error passive
0×8130	Life Guard error
0×8140	Recovered from bus off
$0 \times$ FF20	CPU error
$0 \times F F 30$	Vext for outputs not found/ SPI communication error
$0 \times F F 50$	Output fail

ER							
BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Generic	0	0	temperature	communication	0	0	Manufacture

Where bit equal to " 0 " means "no error".

CANOpen manufacturer specific profile

If hardware switches are in "from memory" mode, the node address is selectable by Object 0x2001.

NODE ADDRESS (Object 0x2001)	
Object value	Description
$0 . .127$	Node address

If hardware switches are in "from memory" mode, the baud rate is selectable by Object 0x2002.

BAUDRATE (Object 0x2002)	
Object value	Description
1	$20 \mathrm{kbit} / \mathrm{s}$
2	$50 \mathrm{kbit} / \mathrm{s}$
3	$125 \mathrm{kbit} / \mathrm{s}$
4	$250 \mathrm{kbit} / \mathrm{s}$
5	$500 \mathrm{kbit} / \mathrm{s}$
6	$800 \mathrm{kbit} / \mathrm{s}$
7	$1 \mathrm{Mbit} / \mathrm{s}$

Object 0×2030 can be used to monitor the CPU temperature.

CPU TEMPERATURE (Object 0x2030)	
Subindex	Description
1	Actual temperature $\left[{ }^{\circ} \mathrm{C} / 10\right]$
2	Temperature for HOT STOP ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 95.0^{\circ} \mathrm{C}$
3	Temperature for HOT ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right] 90.0^{\circ} \mathrm{C}$
4	Temperature for COLD ERROR $\left[{ }^{\circ} \mathrm{C} / 10\right]-25.0^{\circ} \mathrm{C}$

The HOT STOP temperature sends in pre-operational the station.

The HOT ERROR and the COLD ERROR temperature sends the Emergency Object.
The Object is Read Only.
Object 0×2051 is used to send commands to the station module.

CPU COMMAND (Object 0x2051)	
Command code	Description
$0 \times 5 \mathrm{COn}$	Force the preset value (object 0x2211) for counter n
$0 \times 5 \mathrm{D} 0 \mathrm{n}$	Force the reset for counter n
$0 \times 5 \mathrm{E} 0 \mathrm{n}$	Force the overflow reset (object 0x6000 sub 4)

Object 0×2200 is used to customize the input filter.

FILTER PARAMETERS (Object 0x2200)	
Subindex	Description
1	Samples number for filter (default 40)
2	Counter threshold for high level (default 20)
3	Counter threshold for low level (default 20)

For a high level sample the filter counter is incremented, otherwise for a low level the filter counter is decremented.

When the filter counter is greater or equal to subindex2, the input is stated "high".
When the filter counter is lower or equal to subindex3, the input is stated "low".
Between subindex2 and subindex3, no state is asserted (dead zone).

Note that the filter can be disabled by selecting:
Subindex $1=1$
Subindex2=0
Subindex3=0
Object 0×2210 stores the values of the 8 counters in 32bit format.

DIGITAL COUNTERS (Object 0x2210)	
Subindex	Description
1	Counter 1 value
2	Counter 2 value
3	Counter 3 value
4	Counter 4 value
5	Counter 5 value
6	Counter 6 value
7	Counter 7 value
8	Counter 8 value

DIGITAL COUNTERS (Object 0x2211)	
Subindex	Description
1	Preset Counter 1 value
2	Preset Counter 2 value
3	Preset Counter 3 value
4	Preset Counter 4 value
5	Preset Counter 5 value
6	Preset Counter 6 value
7	Preset Counter 7 value
8	Preset Counter 8 value

DIP-SWITCH configuration

BAUD-RATE (Dip-Switches: SW1)							
1	2	3	Meaning				
			Only Baud-Rate is acquired from memory(EEPROM)				
		\bullet	20 kbps				
	\bullet		50 kbps				
	\bullet	-	125 kbps				
\bullet			250 kbps				
\bullet		-	500 kbps				
\bullet	\bullet		800 kbps				
\bullet	-	\bullet	1 Mbps				
ADDRESS (Dip-Switches: SW1)							
4	5	6	7	8	9	10	Meaning
							Only address is acquired from memory(EEPROM)
						-	Address=1
					-		Address=2
					\bullet	-	Address=3
				\bullet			Address=4
				-		-	Address=5
X	X	X	X	X	X	X	
RS485 TERMINATOR (Dip-Switches: SW3)							
R							
RS485 terminator disabled							
- RS485 terminator enabled							
COMMUNICATION PROTOCOL (Dip-Switch: SW2 and SW4)							
SW2		SW					
1		1	Protocol is ModBUS				
\bullet		\bullet	Protocol is CANOPEN				

CANOpen LED description

SERVICE (DIAGNOSTIC) LED DESCRIPTION		
LED	LED status	Meaning
RUN	Blinking light	Pre-operational mode
	Single flash	Stop mode
	ON	Operational mode
ERROR	Single flash	At least one error counter has reached or exceed the warning level
	Double flash	Guard event
	Triple flash	The SYNC has not received within the configurated communication cycle timeout period
	ON	The CAN controller is bus off
	OFF	No error
FAIL	ON Blinking	Data receiving from RS232
POWER	ON	Power supply
INPUT/OUTPUT LED DESCRIPTION		
LED	LED status	Meaning
1-8	ON	Input [1..8] is high
	OFF	Input [1..8] is low
9-16	ON	Input [9..16] is high
	OFF	Input [9..16] is low
10-80	ON	Output [1.8] is high
	OFF	Output [1..8] is low

CANOpen digital input management

Object 0×6003 is used for input filter configuration.

FILTER CONSTANT INPUT (Object 0x6003)	
Subindex	Description
1	Filter enabled for input [1..8]
2	Filter enabled for input [9..16] read only

Object 0×6005 is used for Interrupt Enable:
If the value is " 1 " the station can generate a synchronous TxPDO (DEFAULT setting).
If the value is " 0 " the station can't generate a synchronous TxPDO.
Object 0x6007 is used as Digital Interrupt Mask Low to High.

INTERRUPT MASK LOW TO HIGH (Object 0x6007)	
Subindex	Description
1	Interrupt mask on rising edge input [1..8]
2	Interrupt mask on rising edge input [9..16]
4	Interrupt mask for counters overflow

For subindex for 1 and 2 , if value is " 1 " the generation of TxPDO on rising edge is enabled.
If subindex 3 value is " 1 ", the generation of TxPDO on all 8 counters overflows is enabled.

Object 0×6008 is used as Digital Interrupt Mask High to Low.

INTERRUPT MASK HIGH TO LOW (Object 0x6008)	
Subindex	Description
1	Interrupt mask on falling edge input [1..8]
2	Interrupt mask on falling edge input [9..16]

For subindex 1 and 2 , if values is " 1 " the generation of TxPDO on falling edge is enable.

CANOpen digital output management

Object 0×6200 is used as 8 bit output.

8 BIT OUTPUT (Object 0x6200)	
Subindex	Description
1	Output [1..8] value

Object 0×6206 is used in FAULT case:
If the output n corresponding bit is " 0 ", this output keeps the last value;
If the output n corresponding bit is " 1 ", this output is loaded with object 0×6207

OUTPUT ERROR MODE (Object 0x6206)	
Subindex	Description
1	Output [1..8] error mode

Object 0×6207 is used to store outputs values to load, in fault case (only if in output error mode the corresponding bit value is " 1 ").

OUTPUT ERROR VALUE	
Subindex	Description
1	Output [1..8] error value

Object 0×6220 is used for outputs corresponding bits.

OUTPUT SINGLE BIT (Object 0x6220)	
Subindex	Description
1	Output 1 value
2	Output 2 value
3	Output 3 value
4	Output 4 value
5	Output 5 value
6	Output 6 value
7	Output 7 value
8	Output 8 value

CANOpen functional diagram

counter mode ON (subindex 1 Object $0 x 6003=$ " 0 ")

CANOpen functional diagram

Digital output

CANOpen Object dictionary

COMMUNICATION PROFILEAREA						
INDEX	$\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$	NAME	DESCRIPTION	TYPE	ACCESS	DEFAULT
0x1000	0	Device type	(profile 401=0x191)	UNSIGNED 32	RO	0x00030191
0x1001	0	Error register	Error register (DS401)	UNSIGNED 8	RO	0
0x1002	0	Manufacturer Status register	Status register	UNSIGNED 32	RO	0
0x1005	0	SYNC COB-ID	The device consumes the SYNC message	UNSIGNED 32	RW	0x80
0x1006	0	Comm. window lenght	Sync interval [us]	UNSIGNED 32	RW	0
0x1007	0	Synchronous window lenght	The window [us] for the PDO transmission after the SYNC	UNSIGNED 32	RW	0
0x1008	0	Manufacturer Device name	Device name	VISIBLE STRING	RO	"ZC-16DI-8DO"
0x1009	0	Manufacturer HW version	Hardware version	VISIBLE STRING	RO	"SC000000"
0x100A	0	Manufacturer SW version	Software version	VISIBLE STRING	RO	"SW001191"
0x100C	0	Guard Time	[ms]	UNSIGNED 16	RW	0
0x100D	0	Life time factor	Max delay between two guarding telegrams= Guard_Time. Life_Time_Factor	UNSIGNED 8	RW	0
0x1010	0	Store parameters/ number of mapped object	Max subindex number	UNSIGNED 8	RO	4
	1	Save all parameters	Store not volatile parameters (write in ASCII "save" for store process MSB 0×65766173 LSB)	UNSIGNED 32	RW	1
	2	Save communication parameters	Store not volatile parameters (write in ASCII "save" for store process MSB 0×65766173 LSB)	UNSIGNED 32	RW	1
	3	Save application parameters	Store not volatile parameters	UNSIGNED 32	RW	1
	4	Save manufactures parameters	Store not volatile parameters	UNSIGNED 32	RW	1

0x1011	0	Restore default/ number of mapped object	Max subindex number	UNSIGNED 8	RO	4
	1	Restore all parameters	Restore not volatile parameters (write in ASCII "load" for store process MSB $0 \times 64616 F 6 \mathrm{C}$ LSB)	UNSIGNED 32	RW	0
	2	Restore communication parameters	Restore not volatile parameters (write in ASCII "load" for store process MSB $0 \times 64616 F 6 C$ LSB)	UNSIGNED 32	RW	0
	3	Restore application parameters	Restore not volatile parameters (write in ASCII "load" for store process MSB $0 \times 64616 F 6 \mathrm{C}$ LSB)	UNSIGNED 32	RW	0
	4	Restore Manufactures parameters	Restore not volatile parameters (write in ASCII "load" for store process MSB 0x64616F6C LSB)	UNSIGNED 32	RW	0
0x1014	0	COB-ID emergency Object		UNSIGNED 32	RO	$\underset{0 \times 80}{\text { \$NODEID+ }}$
0x1017	0	Heartbeat producer time	Time (ms) $0 \times 0000=$ there is not heartbeat service	UNSIGNED 16	RW	0
0x1018	0	Identity object/ number of mapped object	Max subindex number	UNSIGNED 8	RO	4
	1	Vendor ID	Seneca srl	UNSIGNED 32	RO	0x00000249
	2	Product code	ZC-16DI-8DO Machine ID Code	UNSIGNED 32	RO	0x00000022
	3	Revision number		UNSIGNED 32	RO	0
	4	Serial number		UNSIGNED 32	RO	0
0x1200	0	$1^{\text {st }}$ SDO port/ number of mapped object	Max subindex number	UNSIGNED 8	RO	2
	1	$\begin{aligned} & \text { COB-ID SDO } \\ & \text { Client-> Server } \end{aligned}$	$\begin{aligned} & \text { COB-ID of receive } \\ & \text { SDO } \\ & \hline \end{aligned}$	UNSIGNED 32	RO	$\begin{aligned} & \text { \$NODEID+ } \\ & 0 \times 600 \\ & \hline \end{aligned}$
	2	$\begin{aligned} & \text { COB-ID SDO } \\ & \text { Server-> Client } \end{aligned}$	$\begin{aligned} & \text { COB-ID of transmit } \\ & \text { SDO } \\ & \hline \end{aligned}$	UNSIGNED 32	RO	$\begin{gathered} \text { \$NODEID+ } \\ 0 \times 580 \\ \hline \end{gathered}$
0x1400	0	$\begin{aligned} & \text { 1st receive PDO } \\ & \text { parameter } \\ & \text { /number of } \\ & \text { mapped object } \end{aligned}$	Max subindex number	UNSIGNED 8	RO	3
	1	$\begin{aligned} & \text { COB-ID used by } \\ & \text { PDO } \end{aligned}$	COB-ID of RxPDO1	UNSIGNED 32	RW	$\begin{gathered} \text { \$NODEID+ } \\ 0 \times 200 \\ \hline \end{gathered}$
	2	Transmission type	Transmission type for PDO1 $0 \times 00=$ synchronous- acyclic 0×01 to $0 x F 0$ =synchronous- cyclic $0 \times F F=$ asynchronous	UNSIGNED 8	RW	0xFF

	3	Inhibit time	Min delay for the next PDO (ms/10)	UNSIGNED 16	RW	0x0000
0x1600	0	$1^{\text {st }}$ receive PDO mapping parameter/ number of mapping objects	Max subindex number	UNSIGNED 8	RW	1
	1	$1^{\text {st }}$ object to be mapped	First object (default output: 1..8)	UNSIGNED 32	RW	0×62000108 Object $=0 \times 6000$ Subindex=1 Length $=8 b i t$
0x1800	0	$1^{\text {st }}$ transmit PDO parameters /number of mapped object	Max subindex number	UNSIGNED 8	RO	3
	1	COB-ID used by PDO	COB-ID of TPDO1	UNSIGNED 32	RW	$\begin{aligned} & \text { \$NODEID+ } \\ & 0 \times 40000180 \end{aligned}$
	2	Transmission type	Transmission type forTxPDO1 $0 \times 00=$ synchronousacyclic 0×01 to $0 x F 0$ =synchronous- cyclic $0 \times F F=$ asynchronous	UNSIGNED 8	RW	0xFF
	3	Inhibit time	Min delay for the next PDO (ms/10)	UNSIGNED 16	RW	0x0000
0x1804	0	5th transmit PDO parameters /number of mapped object	Max subindex number	UNSIGNED 8	RO	3
	1	COB-ID used by PDO	COB-ID of TPDO5	UNSIGNED 32	RW	$\begin{gathered} \text { \$NODEID+ } \\ 0 \times 40000280 \end{gathered}$
	2	Transmission type	Transmission type forTxPDO5 $0 \times 00=$ synchronousacyclic 0×01 to $0 \times F 0$ =synchronous- cyclic $0 \times F F=$ asynchronous	UNSIGNED 8	RW	0×01
	3	Inhibit time	Min delay for the next PDO (ms/10)	UNSIGNED 16	RW	0×0000
0x1805	0	6th transmit PDO parameters /number of mapped object	Max subindex number	UNSIGNED 8	RO	3
	1	$\begin{aligned} & \text { COB-ID used by } \\ & \text { PDO } \end{aligned}$	COB-ID of TPDO6	UNSIGNED 32	RW	$\begin{aligned} & \text { \$NODEID+ } \\ & 0 \times 40000380 \end{aligned}$
	2	Transmission type	Transmission type forTxPDO6 $0 \times 00=$ synchronousacyclic 0×01 to $0 x F 0$ =synchronous- cyclic $0 \times F F=$ asynchronous	UNSIGNED 8	RW	0×01

	3	Inhibit time	Min delay for the next PDO (ms/10)	UNSIGNED 16	RW	0×0000
0x1806	0	7th transmit PDO parameters /number of mapped object	Max subindex number	UNSIGNED 8	RO	3
	1	$\begin{aligned} & \text { COB-ID used by } \\ & \text { PDO } \end{aligned}$	COB-ID of TPDO7	UNSIGNED 32	RW	$\begin{gathered} \text { \$NODEID+ } \\ 0 \times 40000480 \end{gathered}$
	2	Transmission type	```Transmission type forTxPDO7 0x00=synchronous- acyclic 0x01 to 0xF0 =synchronous- cyclic 0xFF=asynchronous```	UNSIGNED 8	RW	0×01
	3	Inhibit time	Min delay for the next PDO (ms/10)	UNSIGNED 16	RW	0x0000
0x1807	0	8th transmit PDO parameters /number of mapped object	Max subindex number	UNSIGNED 8	RO	3
	1	$\begin{aligned} & \text { COB-ID used by } \\ & \text { PDO } \end{aligned}$	COB-ID of TPDO8	UNSIGNED 32	RW	$\begin{gathered} \text { \$NODEID+ } \\ 0 \times 40000300 \end{gathered}$
	2	Transmission type	```Transmission type forTxPDO8 0x00=synchronous- acyclic 0x01 to 0xF0 =synchronous- cyclic 0xFF=asynchronous```	UNSIGNED 8	RW	0×01
	3	Inhibit time	Min delay for the next PDO (ms/10)	UNSIGNED 16	RW	0x0000
0x1A00	0	$1^{\text {st }}$ Transmit PDO mapping parameter/ number of mapped object	Max subindex number	UNSIGNED 8	RW	3
	1	$1^{\text {st }}$ object to be mapped	First object (default: input 1..8)	UNSIGNED 32	RW	$\begin{gathered} 0 \times 60000108 \\ \text { Object=0x6000 } \\ \text { Subindex=1 } \\ \text { Length }=8 \text { bit } \\ \hline \end{gathered}$
	2	2nd object to be mapped	Second object (default: input 9..16)	UNSIGNED 32	RW	Ox60000208 Object $=0 \times 6000$ Subindex $=2$ Length $=8$ bit
	3	3rd object to be mapped	Third object (default: counter $1 . .8$ overflow)	UNSIGNED 32	RW	Ox60000308 Object $=0 \times 6000$ Subindex $=3$ Length $=8$ bit
0x1A04	0	5th Transmit PDO mapping parameter/	Max subindex number	UNSIGNED 8	RW	0

		number of mapped object				
	1	$1^{\text {st }}$ object to be mapped	First object (default: counter 1)	UNSIGNED 32	RW	Ox22100120 Object=0x2210 Subindex=1 Length=32bit
	2	2nd object to be mapped	Second object (default: counter 2)	UNSIGNED 32	RW	$\begin{gathered} 0 \times 22100220 \\ \text { Object=0x2210 } \\ \text { Subindex=2 } \\ \text { Length }=32 b i t \end{gathered}$
0x1A05	0	6th Transmit PDO mapping parameter/ number of mapped object	Max subindex number	UNSIGNED 8	RW	0
	1	$1^{\text {st }}$ object to be mapped	First object (default: counter 3)	UNSIGNED 32	RW	$\begin{gathered} 0 \times 22100320 \\ \text { Object }=0 \times 2210 \\ \text { Subindex=3 } \\ \text { Length }=32 b i t \end{gathered}$
	2	2nd object to be mapped	Second object (default: counter 4)	UNSIGNED 32	RW	$\begin{gathered} 0 \times 22100420 \\ \text { Object }=0 \times 2210 \\ \text { Subindex }=4 \\ \text { Length }=32 \mathrm{bit} \end{gathered}$
0x1A06	0	7th Transmit PDO mapping parameter/ number of mapped object	Max subindex number	UNSIGNED 8	RW	0
	1	$1^{\text {st }}$ object to be mapped	First object (default: counter 5)	UNSIGNED 32	RW	$\begin{gathered} \text { 0x22100520 } \\ \text { Object=0x2210 } \\ \text { Subindex=5 } \\ \text { Length }=32 b i t \\ \hline \end{gathered}$
	2	2nd object to be mapped	Second object (default: counter 6)	UNSIGNED 32	RW	$\begin{gathered} 0 \times 22100620 \\ \text { Object=0x2210 } \\ \text { Subindex=6 } \\ \text { Length }=32 b i t \end{gathered}$
0x1A07	0	8th Transmit PDO mapping parameter/ number of mapped object	Max subindex number	UNSIGNED 8	RW	0
	1	$1^{\text {st }}$ object to be mapped	First object (default: counter 7)	UNSIGNED 32	RW	$\begin{gathered} 0 \times 22100720 \\ \text { Object=0x2210 } \\ \text { Subindex=7 } \\ \text { Length=32bit } \end{gathered}$
	2	2nd object to be mapped	Second object (default: counter 8)	UNSIGNED 32	RW	$\begin{gathered} \text { 0x22100820 } \\ \text { Object }=0 \times 2210 \\ \text { Subindex=8 } \\ \text { Length }=32 b i t \end{gathered}$
INDEX	$\begin{aligned} & \text { SUB } \\ & \text { INDEX } \end{aligned}$	NAME	DESCRIPTION	TYPE	ACCESS	DEFAULT
0×2001	0	Module address	Station address (only if dip switch	$\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$	RW	$0 \times 7 \mathrm{~F}=127$

			4,5,6,7,8,9,10 are OFF)			
0x2002	0	Baudrate	$\begin{array}{\|l\|} \hline \text { Station Baudrate } \\ \text { (only if dip switch } \\ 1,2,3 \text { are OFF) } \\ 1=20 \mathrm{kbps} \\ 2=50 \mathrm{kbps} \\ 3=125 \mathrm{kbps} \\ 4=250 \mathrm{kps} \\ 5=50 \mathrm{kbps} \\ 6=800 \mathrm{kbps} \\ 7=1 \mathrm{Mbpss} \\ \hline \end{array}$	$\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$	RW	0×01
0x2003	0	Master firmware code		$\begin{gathered} \hline \text { UNSIGNED } \\ 16 \end{gathered}$	RO	1185
0x2030	0	Device temperature/ number of parameters	Max subindex number	$\underset{8}{\text { UNSIGNED }}$	RO	4
	1	Internal temperature	Station internal temperature [${ }^{\circ} \mathrm{C} / 10$]	$\begin{gathered} \text { INTEGER } \\ 16 \end{gathered}$	RO	0
	2	Hi Hi temperature	Critical hot temperature (all operations stop) [${ }^{\circ} \mathrm{C} / 10$]	INTEGER 16	RO	950
	3	Hi temperature	Warning for too hot temperature [${ }^{\circ} \mathrm{C} / 10$]	INTEGER 16	RO	900
	4	Low temperature	Critical low temperature (all operations stop) [${ }^{\circ} \mathrm{C} / 10$]	INTEGER 16	RO	-250
0x2051	0	Command	Command to execute Supported commands: $0 \times 5 \mathrm{Cnn}$ force preset for counter mask nn 0×5 Dnn force reset for counter mask nn 0x5Enn force overflow for counter mask nn	$\begin{gathered} \hline \text { UNSIGNED } \\ 16 \end{gathered}$	RW	0
0x2052	0	Aux command	reserved	$\begin{gathered} \text { UNSIGNED } \\ 16 \end{gathered}$	RW	0
0x2200	0	Input filter parameter/ number of parameters	Max subindex number	$\underset{8}{\text { UNSIGNED }}$	RO	3
	1	Filter lenght	Number of samples to evaluate	$\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$	RW	40
	2	Counter threshold for high level	If counter >= threshold_high input is stated "high"	$\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$	RW	20

	3	Counter threshold for low level	If counter <= threshold low input is stated "low"	$\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$	RW	20
0x2210	0	Input counters/ number of counter	Max subindex number	$\underset{8}{\text { UNSIGNED }}$	RO	0x8
	1	Counter 1 value		$\underset{32}{\text { UNSIGNED }}$	RO	0
	2	Counter 2 value		$\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$	RO	0
	3	Counter 3 value		$\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$	RO	0
	4	Counter 4 value		$\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$	RO	0
	5	Counter 5 value		$\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$	RO	0
	6	Counter 6 value		$\begin{gathered} \hline \text { UNSIGNED } \\ 32 \\ \hline \end{gathered}$	RO	0
	7	Counter 7 value		$\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$	RO	0
	8	Counter 8 value		$\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$	RO	0
0x2211	0	Preset for input counters/ number of counters		$\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$	RO	0x8
	1	Counter 1 preset value		$\begin{gathered} \text { UNSIGNED } \\ 32 \\ \hline \end{gathered}$	RW	0
	2	Counter 2 preset value		$\begin{gathered} \hline \text { UNSIGNED } \\ 32 \end{gathered}$	RW	0
	3	Counter 3 preset value		$\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$	RW	0
	4	Counter 4 preset value		$\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$	RW	0
	5	Counter 5 preset value		$\begin{aligned} & \text { UNSIGNED } \\ & 32 \end{aligned}$	RW	0
	6	Counter 6 preset value		$\begin{aligned} & \text { UNSIGNED } \\ & 32 \end{aligned}$	RW	0
	7	Counter 7 preset value		$\begin{aligned} & \text { UNSIGNED } \\ & 32 \end{aligned}$	RW	0
	8	Counter 8 preset value		$\begin{gathered} \text { UNSIGNED } \\ 32 \end{gathered}$	RW	0
0x2520	0	Output status	Max subindex number	$\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$	RO	1
	1	$\begin{aligned} & \text { Output [1..8] } \\ & \text { status } \end{aligned}$	$\begin{aligned} & 1=\text { output status } \\ & \text { error } \\ & 0=\text { output status error } \end{aligned}$	$\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$	RO	0
0x2521	0	Output fail type/ number of parameters	Max subindex number	$\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$	RO	1
	1	Fail type output [1..8]	reserved	$\underset{8}{\text { UNSIGNED }}$	RO	0
STANDARD DEVICE PROFILE AREA						

INDEX	$\begin{gathered} \text { SUB } \\ \text { INDEX } \end{gathered}$	NAME	DESCRIPTION	TYPE	ACCESS	DEFAULT
0x6000	0	8 bit digital input counter 1 overflow/ number of input 8 bit	Max subindex number	$\underset{8}{\text { UNSIGNED }}$	RO	3
	1	Input [1..8] value	Read input [1..8] value	$\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$	RO	0
	2	Input [9..16] value	Read input [9..16] value	$\underset{8}{\text { UNSIGNED }}$	RO	0
	3	$\begin{aligned} & \text { Counter [1..8] } \\ & \text { overflow } \end{aligned}$	Overflow status counter [1..8]	$\underset{8}{\text { UNSIGNED }}$	RO	0
0x6003	0	Filter mask enable/ number of input 8 bit	Max subindex number	$\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$	RO	3
	1	Input [1..8] filter mask enable	Input [1..8] Filter enable Mask (only Ox00 or OxFF allowed) 0x00 $=$ Filter disabled (and Counters 1.8 Enabled) 0xFF $=$ Filter enabled (and Counters 1..8 Disabled) 	$\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$	RW	0xFF
	2	Input [9..16] filter mask enable	Filter activation for inputs IN9IN16 using a bit interpretation to mask the inputs: are always deactivated	$\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$	RO	0×00
0x6005	0	Global interrupt enabled	$\begin{array}{\|l\|} \hline 0=\text { TxPDO } \\ \text { asynchronous } \\ \text { disabled } \\ 1=\text { TxPDO } \\ \text { asynchronous } \\ \text { enabled } \\ \hline \end{array}$	BOOLEAN	RW	1
0x6007	0	Interrupt mask Low to High/number of input	Max subindex number	$\underset{8}{\text { UNSIGNED }}$	RO	3
	1	Mask interrupt input [1..8]	Input [1..8] rising interrupt mask enable Mask bit0=rising interrupt disabled Mask bit1=rising interrupt enabled	$\underset{8}{\text { UNSIGNED }}$	RW	0xFF

	2	Mask interrupt input [9..16]	Input [9..16] rising interrupt mask enable Mask bit0=rising interrupt disabled Mask bit1=rising interrupt enabled	$\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$	RW	0xFF
	3	Mask interrupt counter overflow	Counter [1..8] rising interrupt mask enable Mask bit0=rising interrupt disabled Mask bit1=rising interrupt enabled	$\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$	RW	0×00
0×6008	0	Interrupt mask High to Low/number of input	Max subindex number	$\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$	RO	2
	1	Mask interrupt input [1..8]	Input [1..8] falling interrupt mask enable Mask bit0= falling interrupt disabled Mask bit1=falling interrupt enabled	$\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$	RW	0xFF
	2	Mask interrupt input [9..16]	Input [9..16] falling interrupt mask enable Mask bit0= falling interrupt disabled Mask bit1 = falling interrupt enabled	$\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$	RW	0xFF
0x6020	0	Read input 1 bit/ number of input bit	Max subindex number	$\begin{gathered} \hline \text { UNSIGNED } \\ 8 \end{gathered}$	RO	16
	1	Input 1 value	$\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$	BOOLEAN	RO	
	2	Input 2 value	$\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$	BOOLEAN	RO	
	3	Input 3 value	$\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$	BOOLEAN	RO	
	4	Input 4 value	$\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$	BOOLEAN	RO	
	5	Input 5 value	$\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$	BOOLEAN	RO	
	6	Input 6 value	$\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$	BOOLEAN	RO	
	7	Input 7 value	$\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$	BOOLEAN	RO	
	8	Input 8 value	$\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$	BOOLEAN	RO	
	9	Input 9 value	$0=$ input is "low"	BOOLEAN	RO	

		1 =input is "high"			
10	Input 10 value	$\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$	BOOLEAN	RO	
11	Input 11 value	$\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$	BOOLEAN	RO	
12	Input 12 value	$\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$	BOOLEAN	RO	
13	Input 13 value	$0=$ input is "low" $1=$ input is "high"	BOOLEAN	RO	
14	Input 14 value	$\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$	BOOLEAN	RO	
15	Input 15 value	$\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$	BOOLEAN	RO	
16	Input 16 value	$\begin{aligned} & 0=\text { input is "low" } \\ & 1=\text { input is "high" } \end{aligned}$	BOOLEAN	RO	

0x6200	0	8 bit output/ number of output 8 bit	Max subindex number	$\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$	RO	1
	1	Digital output $\text { [1.. } 8 \text {] }$	Output [1..8] values	$\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$	RW	0
0x6206	0	Error mode output/ number of output	Max subindex number	$\begin{aligned} & \text { UNSIGNED } \\ & 8 \end{aligned}$	RO	1
	1	Output [1..8] error mode	$\begin{aligned} & 1=\text { load } 0 \times 6207 \text { value } \\ & 0=\text { keep last } \end{aligned}$	$\begin{gathered} \text { UNSIGNED } \\ 8 \end{gathered}$	RW	0xFF
0x6207	0	Error value output	Max subindex number	$\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$	RO	1
	1	Output [1..8] error value	Value to load in fail case	$\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$	RW	0×00
0x6220	0	Single bit output	Max subindex number	$\begin{gathered} \text { UNSIGNED } \\ 8 \\ \hline \end{gathered}$	RO	8
	1	Output 1 value		BOOLEAN	RW	0
	2	Output 2 value		BOOLEAN	RW	0
	3	Output 3 value		BOOLEAN	RW	0
	4	Output 4 value		BOOLEAN	RW	0
	5	Output 5 value		BOOLEAN	RW	0
	6	Output 6 value		BOOLEAN	RW	0
	7	Output 7 value		BOOLEAN	RW	0
	8	Output 8 value		BOOLEAN	RW	0

