SENECA

USER MANUAL

S203TA

SENECA s.r.I.
Via Austria, 26 - 35127 - PADOVA - ITALY
Tel. +39.049.8705355-8705359 Fax. +39.049.8706287
Web site: www.seneca.it
Technical assistance: supporto@seneca.it (IT), support@seneca.it (Other)
Commercial reference: commerciale@seneca.it (IT), sales@seneca.it (Other)

This document is property of SENECA srl. Duplication and reproduction of its are forbidden (though partial), if not authorized. Contents of present documentation refers to products and technologies described in it. Though we strive for reach perfection continually, all technical data contained in this document may be modified or added due to technical and commercial needs; it's impossible eliminate mismatches and discordances completely. Contents of present documentation is anyhow subjected to periodical revision. If you have any questions don't hesitate to contact our structure or to write us to e-mail addresses as above mentioned.

Seneca Z-PC Line module: S203TA

The S203TA module is a three-phase network analyzer for electric-line voltage up to 600Vac and electric-line current up to the current transformer rated current (50 Hz or 60 Hz). The module has an analog output, electrical value directly proportional to selected input: voltagetype output or current-type output. The electrical value (analog output) is available on screw terminals and the normalized value is available on RS485 registers.

General characteristics

> It is possible to detect, with reference to the electric-line and load connected to its: RMS voltage, RMS current, active power, reactive power, apparent power, $\cos \Phi$, frequency, energy (for each measure: phase A, phase B, phase C and three-phase values are available, except frequency)
> Normalized start/end scale between $0 . .+10000$ (for RMS voltage, RMS current, active power, apparent power) or between ± 10000 (for reactive power, $\cos \Phi$)
$>$ It is possible to reset the energy values
$>$ It is possible to manage connections for high power devices using current transformers (with secondary current=5Arms)
> It is possible to connect the module using single-phase insertion, ARON insertion (three-phase without neutral), 4-wires insertion (three-phase with neutral), single-phase without CT insertion
$>$ It is possible to configure the module (node) address and baud-rate by Dip-Switches
> It is possible to configure electrical-line frequency, output (electrical value), single/three phase application, rescaled-input type, insertion-type and maximum current by Dip-Switches

Features

INPUT	
Number	3 (Phase A, phase B, phase C) + Neutral
Accuracy	0.2% of E.E.S. (Voltmeter, amperemeter, watt-meter) + accuracy of the current transformer
	Thermal stability: < $100 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$
	EMI: < 1%
Protection	This module provides inputs protection against the ESD (up to 4kV)
Voltage-type IN	E.S.S./E.E.S.(Electrical Start/End Scale) between: 0..600Vac. Input impedance: $800 \mathrm{k} \Omega$
Current-type IN	E.S.S./E.E.S.(Electrical Start/End Scale) between: 0...primary current of current transformer; max peak factor: 3. Input impedance: 1Ω
OUTPUT	
Number	1
Type	Voltage, active current, passive current
Accuracy	0.1% of output scale range
Cables at secondary circuit	The power consumption through two cables (they are necessary to connect CT secondary to S203TA) must to be less than rated power of current transformer
$\begin{aligned} & \text { Response time } \\ & (10 \% . .90 \%) \end{aligned}$	0.4 s
Voltage-type OUT	Output scale range configurable between: $0-10 \mathrm{~V}$ or $0-5 \mathrm{~V}$ (minimum resistance that can be connected: $2 \mathrm{k} \Omega$). Saturation value is 11 V

Current-type OUT	Output scale range configurable between: $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ (max resistance that can be connected: 500Ω). Saturation value is 22 mA
CONNECTIONS	Screw terminals $31(\mathrm{~B}), 32(\mathrm{~A}), 33$ (GND)
RS485 interface	1500 Vac isolation between: power supply, ModBUS RS485 + output 3750 Vac isolation between: input (electric network) and other parts
ISOLATIONS	

POWER SUPPLY

Supply voltage	$10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$
Power consumption	Max: 2.5 W

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

I-8 "Accuracy" terms are guaranteed with reference to the following ranges: RMS voltage $=40 \ldots 600 \mathrm{Vac}$, RMS current $=(0.4 \ldots 100) \%$ of Inom (current-transformer primary-current).

MODULE CASE	
Case-type	DIN 43880, UL94VO plastic material, gray
Dimensions	$105 \times 89 \times 60 \mathrm{~mm}$
Terminal board	Not removable 3-way screw terminals: pitch 5.08 mm , sections
	$2.5 \mathrm{~mm}^{2}$
Protection class	IP20

Screw terminals	Measurement scala range
13,14	Connect CT secondary for phase A
15,16	Connect CT secondary for phase B
17,18	Connect CT secondary for phase C
$19,20,21,22$	See input connection figure
25,26	Power supply (10..40Vdc or 19...28Vac; 2.5 W$)$
27	LED PWR
28	LED ERR
29	LED Tx
30	LED Rx
31	RS485 B
32	RS485 A
33	RS485 GND
$34,35,36$	See output connection figure

Connections

Input connection

In the following figure are shown typical current transformer, to connect S203TA module with electrical-line.

D-8 Accuracy class equal to 0.2 is the accuracy class related to the S203TA module only: it is regardless of the accuracy class for current transformer CT, because CT is chosen by user (this is not true for S203T module).

In the following figure are shown input connections for four insertion types: single-phase, singlephase without current transformer, ARON (three-phase with two CT) and 4-wires (three-phase with three CT).

WARNING

ONLY the connections shown in the following figure for S203TA module are allowed!
If a negative power is measured, check current transformer insertion!

It is forbidden to connect the current transformer secondary to ground.

Monophase

ARON (Threephase without neutral)

4 WIRES (Threephase with neutral)

ATTENTION

In "single-phase without current transformer"-insertion figure, screw terminals are shown in a different position!

[^0]
Output connection

I- -8 Shielded cables are recommended to connect the outputs.
I-8 It is not possible to obtain an output (electric value) directly proportional to the electricline frequency, energy, reactive power, apparent power (see Dip-switches SW2-6 and SW2-7).

This module allows to associate a electric quantity (RMS voltage, RMS current, active power, cos ϕ, through Dip-switches) to the analog output value (and normalized measure), as described in the following points:

- if selected electric quantity (single-phase/three-phase, RMS voltage/RMS current/active power/cos ϕ) is less than MinIN (reg.40028, 40029 floating point): normalized measure (reg.40217) is equal to 0 and analog output is $0 \%(0 \mathrm{~V}, 0 \mathrm{~mA}, 4 \mathrm{~mA}$), available through screw terminals;
- if selected electric quantity (single-phase/three-phase, RMS voltage/RMS current/active power/cos ϕ) is greater than MaxIN (reg.40030, 40031 floating point): normalized measure (reg. 40217) is equal to 10000 and analog output is 100% ($5 \mathrm{~V}, 10 \mathrm{~V}, 20 \mathrm{~mA}$), available through screw terminals;
- if selected electric quantity (single-phase/three-phase, RMS voltage/RMS current/active power/cos ϕ) is between MinIN and MaxIN, analog output (current/voltage) is directly proportional to the selected electric quantity and it is available through screw terminals.

I- $\frac{3}{}$ To choose if electric quantity is single-phase (it is possible to choose which phase: A, B or C) or three-phase, set reg. 40025 .

RS485 serial port and power supply
26
25

$$
\begin{gathered}
10 \div 40 \mathrm{VDC} \\
19 \div 28 \mathrm{VAC} \\
2.5 \mathrm{~W}
\end{gathered}
$$

	33	\oslash
RS485	GND	
SERIAL PORT	32	\oslash
	31	\varnothing
A		

Functioning

The S203TA module allows to detect and capture the following electric quantity: RMS voltage, RMS current, active power, reactive power, apparent power, frequency, $\cos \phi$, energy. For each quantity, it is possible to read phase A, phase B, phase C and three-phase value (except for frequency).

The measure ranges for RMS voltage, RMS current, active power, reactive power, apparent power, energy, $\cos \Phi$, frequency are shown in the following table.

Possible measures (electric quantities)	Measurement scale range
RMS voltage	$0 \ldots 600 \mathrm{Vac}$
RMS current	$0 \ldots I_{\text {NOM }}$ (current transformer)
Active power	$0 \ldots\left(600 \cdot I_{\text {NOM }}\right) \mathrm{W}$
Reactive power	$0 \ldots\left(600 \cdot I_{\text {NOM }}\right) \mathrm{VAR}$
Apparent power	$0 \ldots\left(600 \cdot I_{\text {NOM }}\right) \mathrm{VA}$
Energy	1
Cos Φ	$0 \ldots 1$
Frequency	$40 \ldots 70 \mathrm{~Hz}$

The S203TA module allows to read floating point measures (for every quantity) and normalized values (except for energy and frequency); in particular, energy values are kept stored if module is power off.
[-क RMS voltage, RMS current, active power, frequency, energy are measured by S203TA directly (for each phase A, B, C); reactive power, apparent power, $\cos \Phi$ and all three-phase values are obtained through processing by S203TA.

Possible measures	Symbol	$\begin{array}{c}\text { Measured } \\ \text { value }\end{array}$	$\begin{array}{c}\text { Calculated } \\ \text { value }\end{array}$	Value
RMS voltage for phase $\mathrm{A}, \mathrm{B}, \mathrm{C}$				

${ }^{(*)}$ It is possible to use the S203TA module as frequency meter to measure frequencies between 40 Hz and 70 Hz . To measure RMS voltage, RMS current, active power, reactive power, apparent power, energy, $\cos \Phi$, the signal has to have an accurate frequency (about 50 Hz or 60 Hz).

It is possible to compensate the electrical-line frequency: energy and power measures correction for 50 Hz or 60 Hz (if network frequency fluctuation is greater than 30 mHz).

Dip-switches table

In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).

BAUD-RATE (Dip-Switches: SW1)						
1	2	Meaning				
		Baud-rate=9600 Baud				
	\bullet	Baud-rate=19200 Baud				
\bullet		Baud-rate=38400 Baud				
\bullet	-	Baud-rate=57600 Baud				
ADDRESS (Dip-Switches: SW1)						
3	4	5	6	7	8	Meaning
						Address an
					-	Address=1
				-		Address=2
				\bullet	-	Address=3
			\bullet			Address=4
X	X	X	X	X	X
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	Address=63

FREQUENCY (Dip-Switches: SW2)

1 Meaning
Electric network frequency $=50 \mathrm{~Hz}$

- Electric network frequency $=60 \mathrm{~Hz}$

OUTPUT - ELECTRIC VALUE (Dip-Switches: SW2)

2 3 Meaning

Output=0..10V

- Output=0..5V

Output=0..20mA

- \bullet Output=4..20mA

APPLICATION TYPE (Dip-Switches: SW2)
4 Meaning
Three-phase

- Single-phase

INSERTION TYPE (Dip-Switches: SW2)
5 Meaning
4-wires (it is activated if SW2-4 is "Three-phase")

- Aron (it is activated if SW2-4 is "Three-phase")

INPUT - ELECTRIC VALUE SENT TO OUTPUT - ELECTRIC VALUE (Dip-Switches: SW2)		
6	7	Meaning
		RMS voltage
	\bullet	RMS current
\bullet		Active power
\bullet	\bullet	Cos ϕ
MAX SW2)		
8	Meaning	
	100A	
\bullet	25A	

$\mathrm{Np}=$ turn number of primary; $\mathrm{Ns}=$ turn number of secondary.

RS485 register table

	Delay for RS485 (delay of communication response: it represents the number of the pauses(*) between the end of Rx message and the start of Tx message): from $0 x 00=0$ to $0 x F F=255$ (*) 1 pause $=6$ characters	0	Bit [7:0]
Address	/ ${ }^{\text {/ }}$ MSB, LSB ${ }^{\text {a }}$ (R/W		40025
	Address for RS485 (address of module/node if parameters are configurated by memory modality): from $0 \times 01=1$ to $0 x F F=255$	1	Bit [15:8]
	Parity for RS485: 0=there isn't; 1=even parity; 2=odd parity	0	Bit [7:0]
CT Type	Word \quad R/W		40016
	These bits aren't used Current Transformer-type setting: 0=passive CT, with output=5Arms (as the equipment supplied current transformer); 1=compensated CT (phase error is zero). Only for equipment supplied current transformer (passive CT) the precision class is guaranteed	1	Bit [15:1]
		0	Bit 0
Nominal Current MSW	Word		40018
Nominal Current LSW	Word		40019
	Current transformer nominal current (primary current) setting. This value affects: RMS current floating point value, active power floating point value, reactive power floating point value, apparent power floating point value, energy floating point value (both single-phase and threephase); this value does not affect normalized values. $\mathrm{Np}=$ turn number of primary Ns=turn number of secondary	$\begin{aligned} & 1000 \\ & {[\text { Arms] }} \end{aligned}$	
OUT phase	Word \quad R/W		40017
	Output-electric value (see screw terminals: 34, 35, 36, and Dip-switches SW2-6 and SW2-7) is referred to one of the following phases: $0=$ phase A $1=$ phase B 2=phase C Any other value of reg.40017=three-phase value	0 (if single- phase)	
MinIN MSW	FP32bit_MSW		40020
MinIN LSW	FP32bit_LSW		40021
	Input-electric value corresponding to minimum normalized value and minimum output-electric value. To choose which phase corresponds to normalized value, set reg.40017; to choose which input-electric value corresponds to normalized value, set Dip-Switches SW2-6 and SW2-7 (RMS voltage, RMS current, active power, $\cos \phi$). For RMS voltage, MinIN is [V]; for RMS current, MinIN is [mA]; for active power, MinIN is [W]; for $\cos \phi$, MinIN is a dimensionless number	0	
MaxIN MSW	FP32bit_MSW		40022
MaxIN LSW	FP32bit_LSW		40023
	Input-electric value corresponding to max normalized value and max output-electric value. To choose which phase corresponds to normalized value, set reg.40017; to choose which input-electric value corresponds to normalized value, set Dip-Switches SW2-6 and SW2-7 (RMS voltage, RMS current, active power, $\cos \phi$). For RMS voltage, MaxIN is [V]; for RMS current, MaxIN is [mA]; for active power, MaxIN is [W]; for $\cos \phi$, MaxIN is a dimensionless number	600	

Normalized Measure	Between:0; 10000	Word	R		40217
	Normalized measure of input: this value is referred to reg. 40020,40021 FP) and reg. 40022,40023 (FP). To know which phase corresponds to normalized value, see reg.40017; to know which input-electric value corresponds to normalized value, see Dip-Switches SW2-6 and SW2-7 configuration (RMS voltage, RMS current, active power, $\cos \phi)$. Reg. 40217 is equal to 0 , if selected floating point value is less than reg.40020,40021 (FP) Reg. 40217 is equal to 10000 , if selected floating point value is greater than 40022,40023 (FP) Reg. 40217 is directly proportional to input electrical value, for any other value (saturation value: 11000)			/	
VOLTAGE					
VoltageA MSW		FP32bit_MSW	R		40135
VoltageA LSW		FP32bit_LSW	R		40136
	RMS voltage electrical measure of input [Vrms] for phase A.			/	
VoltageB MSW		FP32bit_MSW	R		40137
VoltageB LSW		FP32bit_LSW	R		40138
	RMS voltage electrical measure of input [Vrms] for phase B.			/	
VoltageC MSW		FP32bit_MSW	R		40139
VoltageC LSW		FP32bit_LSW	R		40140
	RMS voltage electrical measure of input [Vrms] for phase C.			/	
Voltage3PH MSW		FP32bit_MSW	R		40141
Voltage3PH LSW		FP32bit_LSW	R		40142
	RMS voltage electrical measure of input [Vrms] for threephase $\left(V_{A}+V_{B}+V_{C}\right) / 3$.			1	
VoltageA	Between: 0; 10000	Word	R		40193
	RMS voltage normalized value for phase A. This value is regardless of reg.40018, 40019			/	
VoltageB	Between: 0; 10000	Word	R		40194
	RMS voltage normalized value for phase B. This value is regardless of reg.40018, 40019			/	
VoltageC	Between: 0; 10000	Word	R		40195
	RMS voltage normalized value for phase C. This value is regardless of reg.40018, 40019			/	
Voltage3PH	Between: 0; 10000	Word	R		40196
	RMS voltage normalized value for three-phase. This value is regardless of reg.40018, 40019			/	
	CURRENT				
CurrentA MSW		FP32bit_MSW	R		40143
CurrentA LSW		FP32bit_LSW	R		40144
	RMS current electrical measure of input [mArms] for phase A. This value depends on reg. 40018,40019			/	
CurrentB MSW		FP32bit_MSW	R		40145
CurrentB LSW		FP32bit_LSW	R		40146
	RMS current electrical measure of input [mArms] for			/	

	phase B. This value depends on reg.40018, 40019				
CurrentC MSW		FP32bit_MSW	R		40147
CurrentC LSW		FP32bit_LSW	R		40148
	RMS current electrical measure of input [mArms] for phase C. This value depends on reg.40018, 40019			/	
$\begin{aligned} & \text { Current3PH } \\ & \text { MSW } \end{aligned}$		FP32bit_MSW	R		40149
$\begin{aligned} & \text { Current3PH } \\ & \text { LSW } \end{aligned}$		FP32bit_LSW	R		40150
	RMS current electrical measure of input [mArms] for threephase $\left(I_{A}+I_{B}+I_{C}\right) / 3$. This value depends on reg.40018, 40019			/	
CurrentA	Between: 0; 10000	Word	R		40197
	RMS current normalized value for phase A. This value is regardless of reg.40018, 40019			/	
CurrentB	Between: 0; 10000	Word	R		40198
	RMS current normalized value for phase B. This value is regardless of reg.40018, 40019			/	
CurrentC	Between: 0; 10000	Word	R		40199
	RMS current normalized value for phase C. This value is regardless of reg.40018, 40019			/	
Current3PH	Between: 0; 10000	Word	R		40200
	RMS current normalized value for three-phase. This value is regardless of reg. 40018,40019			/	
	ACTIVE POWER				
ActivePowA MSW		FP32bit_MSW	R		40151
ActivePowA LSW		FP32bit_LSW	R		40152
	Active power electrical measure of input [W] for phase A. This value depends on reg.40018, 40019			/	
ActivePowB MSW		FP32bit_MSW	R		40153
ActivePowB LSW		FP32bit_LSW	R		40154
	Active power electrical measure of input [W] for phase B. This value depends on reg.40018, 40019			/	
ActivePowC MSW		FP32bit_MSW	R		40155
ActivePowC LSW		FP32bit_LSW	R		40156
	Active power electrical measure of input [W] for phase C. This value depends on reg.40018, 40019			/	
ActivePow3PH MSW		FP32bit_MSW	R		40157
ActivePow3PH LSW		FP32bit_LSW	R		40158
	Active power electrical measure of input [W] for threephase $\left(P_{A}+P_{B}+P_{C}\right) / 3$. This value depends on reg.40018, 40019			/	
ActivePowA	Between: 0; 10000	Word	R		40201
	Active power normalized value for phase A. This value is regardless of reg.40018, 40019			/	
ActivePowB	Between: 0; 10000	Word	R		40202
	Active power normalized value for phase B. This value is regardless of reg.40018, 40019			/	
ActivePowC	Between: 0; 10000	Word	R		40203
	Active power normalized value for phase C. This value is			/	

	regardless of reg.40018, 40019				
ActivePow3PH	Between: 0; 10000	Word	R		40204
	Active power normalized value for three-phase. This value is regardless of reg. 40018,40019			/	
	REACTIVE POWER				
ReactivePowA MSW		FP32bit_MSW	R		40159
ReactivePowA LSW		FP32bit_LSW	R		40160
	Reactive power electrical measure of input [VAR] for phase A. This value depends on reg.40018, 40019			/	
ReactivePowB MSW		FP32bit_MSW	R		40161
ReactivePowB LSW		FP32bit_LSW	R		40162
	Reactive power electrical measure of input [VAR] for phase B. This value depends on reg.40018, 40019			/	
ReactivePowC MSW		FP32bit_MSW	R		40163
$\begin{aligned} & \text { ReactivePowC } \\ & \text { LSW } \end{aligned}$		FP32bit_LSW	R		40164
	Reactive power electrical measure of input [VAR] for phase C. This value depends on reg. 40018,40019			/	
ReactivePow3 PH MSW		FP32bit_MSW	R		40165
$\begin{aligned} & \text { ReactivePow3 } \\ & \text { PH LSW } \end{aligned}$		FP32bit_LSW	R		40166
	Reactive power electrical measure of input [VAR] for three-phase $\left(Q_{A}+Q_{B}+Q_{C}\right) / 3$. This value depends on reg.40018, 40019			/	
ReactivePowA	Between: -10000; 10000	Word	R		40205
	Reactive power normalized value for phase A. This value is regardless of reg.40018, 40019			/	
ReactivePowB	Between: -10000; 10000	Word	R		40206
	Reactive power normalized value for phase B. This value is regardless of reg.40018, 40019			/	
ReactivePowC	Between: -10000; 10000	Word	R		40207
	Reactive power normalized value for phase C. This value is regardless of reg.40018, 40019			/	
ReactivePow3 PH	Between: -10000; 10000	Word	R		40208
	Reactive power normalized value for three-phase. This value is regardless of reg.40018, 40019			/	
	APPARENT POWER				
ApparentPowA MSW		FP32bit_MSW	R		40167
ApparentPowA LSW		FP32bit_LSW	R		40168
	Apparent power electrical measure of input [VA] for phase A. This value depends on reg. 40018,40019			/	
ApparentPowB MSW		FP32bit_MSW	R		40169
ApparentPowB LSW		FP32bit_LSW	R		40170
	Apparent power electrical measure of input [VA] for phase B. This value depends on reg. 40018,40019			/	

COS ϕ					
Cos ϕ A MSW		FP32bit_MSW	R		40175
$\operatorname{Cos} \phi$ A LSW		FP32bit_LSW	R		40176
	Cos ϕ electrical measure of input [dimensionless number] for phase A			/	
CospB MSW		FP32bit_MSW	R		40177
$\operatorname{Cos} \phi$ B LSW		FP32bit_LSW	R		40178
	Cos ϕ electrical measure of input [dimensionless number] for phase B			/	
CosфC MSW		FP32bit_MSW	R		40179
Cos ϕ C LSW		FP32bit_LSW	R		40180

	Cos ϕ electrical measure of input [VA] for phase C			/	
$\begin{aligned} & \text { Cosф3PH } \\ & \text { MSW } \end{aligned}$		FP32bit_MSW	R		40181
Cos $\phi 3$ PH LSW		FP32bit_LSW	R		40182
	Cos ϕ electrical measure of input [VA] for three-phase (P/S)			/	
$\operatorname{Cos} \phi \mathrm{A}$	Between: -10000; 10000	Word	R		40213
	Cosh normalized value for phase A. This value is regardless of reg.40018, 40019			/	
$\operatorname{Cos} \phi \mathrm{B}$	Between: -10000; 10000	Word	R		40214
	Cosh normalized value for phase B. This value is regardless of reg.40018, 40019			/	
CospC	Between: -10000; 10000	Word	R		40215
	Cos ϕ normalized value for phase C. This value is regardless of reg.40018, 40019			/	
Cosф3PH	Between: -10000; 10000	Word	R		40216
	$\operatorname{Cos} \phi$ normalized value for three-phase. This value is regardless of reg.40018, 40019			1	
FREQUENCY					
Freq MSW		FP32bit_MSW	R		40183
Freq LSW		FP32bit_LSW	R		40184
	Network frequency measure [Hz]			/	

LEDs for signalling

In the front-side panel there are 4 LEDs and their state refers to important operating conditions of the module.

LED	LED status	Meaning
PWR	Constant light	The module power is on
ERR	Blinking light	Measure of voltage: <40Vac (at least one of the phase used)
	Constant light	The module has at least one of the errors described in RS485 Registers table
RX	Constant light	Verify if the bus connection is corrected
	Blinking light	The module received a data packet
TX	Blinking light	The module sent a data packet

Easy-SETUP

To configure the Seneca Z-PC Line modules, it is possible to use Easy-SETUP software,
Free-downloadable from the www.seneca.it; the configuration can be performed by RS232 or RS485 bus communication.

[^0]: I- -8
 14, 16, 18, 22 screw terminals are connected internally.

