USER MANUAL

SENECA s.r.I.

Via Austria, 26 - 35127 - PADOVA - ITALY
Tel. +39.049.8705355-8705359 Fax. +39.049.8706287
Web site: www.seneca.it
Technical assistance: supporto@seneca.it (IT), support@seneca.it (Other)
Commercial reference: commerciale@seneca.it (IT), sales@seneca.it (Other)

This document is property of SENECA srl. Duplication and reproduction of its are forbidden (though partial), if not authorized. Contents of present documentation refers to products and technologies described in it. Though we strive for reach perfection continually, all technical data contained in this document may be modified or added due to technical and commercial needs; it's impossible eliminate mismatches and discordances completely. Contents of present documentation is anyhow subjected to periodical revision. If you have any questions don't hesitate to contact our structure or to write us to e-mail addresses as above mentioned.

Seneca Z-PC Line module: S203T

The S203T module is a three-phase network analyzer for electric-line voltage up to 600Vac and electric-line current up to $100 \mathrm{~mA}^{*} \mathrm{CT}$ ratio, tipically up to 100 A (50 Hz or 60 Hz). The module has an analog output, electrical value directly proportional to the selected input: voltage-type output or current-type output. The electrical value (analog output) is available on screw terminals and the normalized value is available on RS485 registers.

General characteristics

> It is possible to detect, with reference to the electrical-line and load connected to its: RMS voltage, RMS current, active power, reactive power, apparent power, $\cos \Phi$, frequency, energy (for each measure: phase A, phase B, phase C and three-phase values are available, except frequency)
> Normalized start/end scale between 0..+10000 (for RMS voltage, RMS current, active power, apparent power) or between ± 10000 (for reactive power, $\cos \Phi$)
$>$ It is possible to reset the energy values
$>$ It is possible to manage connections with high power devices using current transformers
$>$ It is possible to connect the module using single-phase insertion, 3-wires insertion (three-phase without neutral) or 4-wires insertion (three-phase with neutral)
$>$ Configuration of the module (node) address and baud-rate by Dip-Switches
$>$ It is possible to configure the electrical-line frequency, output (electrical value), single/three phase application, rescaled-input type, insertion-type and maximum current by Dip-Switches

Features

INPUT	
Number	3 (Phase A, phase B, phase C) + Neutral
Accuracy	0.2\% of E.E.S. (Voltmeter, amperemeter, wattmeter)
	Thermal stability: < $100 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$
	EMI: < 1%
Protection	This module provides inputs protection against the ESD (up to 4 kV)
Voltage-type IN	E.S.S./E.E.S.(Electrical Start/End Scale) between: 0..600Vac. Input impedance: $800 \mathrm{k} \Omega$
Current-type IN	E.S.S./E.E.S.(Electrical Start/End Scale) between: 0...100A: ($0 . . .25$ or $0 \ldots 100 \mathrm{mArms})^{*} \mathrm{CT}$. Max peak factor: 4; max current: (100 or 400 mApeak$)^{*} \mathrm{CT}$. Input impedance: 1Ω
OUTPUT	
Number	1
Type	Voltage, active current, passive current
Accuracy	0.1% of output scale range
Cable max resistance at secondary circuit	3Ω (two cables necessary to connect CT secondary to S203T)
Response time (10\%..90\%)	0.4s
Voltage-type OUT	Output scale range configurable between: $0-10 \mathrm{~V}$ or $0-5 \mathrm{~V}$ (minimum resistance that can be connected: $2 \mathrm{k} \Omega$). Saturation value is 11 V
Current-type OUT	Output scale range configurable between: $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ (max resistance that can be connected: 500Ω). Saturation value is 22 mA

CONNECTIONS	
RS485 interface	Screw terminals 31 (B), 32 (A), 33 (GND)
ISOLATIONS	1500 Vac isolation between: power supply, ModBUS RS485 +output 3750Vac isolation between: input (electric network) and other parts

POWER SUPPLY

Supply voltage	$10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$
Power consumption	Max: 2.5 W

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

[-8 "Accuracy" terms are guaranteed with reference to the following ranges: RMS voltage $=40 \ldots 600 \mathrm{Vac}$, RMS current $=(0.1 \ldots 25$ or $0.4 \ldots 100) \mathrm{mA} \cdot \mathrm{CT}$.

MODULE CASE	DIN 43880, UL94VO plastic material, gray
Case-type	$105 \times 89 \times 60 \mathrm{~mm}$
Dimensions	Not removable Terminal board 2.way screw terminals: pitch 5.08 mm , sections Protection class $\mathrm{PP20}$

Screw terminals	Measurement scale range
13,14	Connect CT secondary for phase A
15,16	Connect CT secondary for phase B
17,18	Connect CT secondary for phase C
$19,20,21,22$	See input connection figure
25,26	Power supply (10..40Vdc or 19...28Vac; 2.5W)
27	LED PWR
28	LED ERR
29	LED Tx
30	LED Rx
31	RS485 B
32	RS485 A
33	RS485 GND
$34,35,36$	See output connection figure

Connections

Input connection
In the following figure are shown typical current transformers (TA25 and TA100), to connect S203T module with electrical line.

Np=turn number of primary; Ns=turn number of secondary.
D-s Accuracy class equal to 0.2 is the sum of the accuracy class for S203T module and accuracy class of its current transformer (this is not true for S203TA module).

In the following figure are shown input connections for three insertion types: single-phase, 3wires (three-phase without neutral) and 4-wires (three-phase with neutral).

WARNING

ONLY the connections shown in the following figure for S203T module are allowed!
If a negative power is measured, check current transformer insertion!

NOTE
It is forbidden to connect the current transformer secondary to ground.

```
SINGLE PHASE
```


3 WIRES
(Three-Phase
without Neutral)

4 WIRES

(Three-Phase with Neutral) \qquad $13 \quad 14 \quad 15 \quad 16 \quad 17 \quad 18 \quad 19 \quad 20 \quad 21 \quad 22$

$14,16,18,22$ screw terminals are connected internally.

Output connection

Shielded cables are recommended to connect the outputs.

It is not possible to obtain an output (electric value) directly proportional to the electricnetwork frequency, energy, reactive power, apparent power (see Dip-switches SW2-6 and SW2-7).

This module allows to associate a electric quantity (RMS voltage, RMS current, active power, $\cos \phi$, through Dip-switches) to the analog output value (and normalized measure), as described in the following points:

- if selected electric quantity (single-phase/three-phase, RMS voltage/RMS current/active power/cos ϕ) is less than MinIN (reg.40028, 40029 floating point): normalized measure (reg.40217) is equal to 0 and analog output is $0 \%(0 \mathrm{~V}, 0 \mathrm{~mA}, 4 \mathrm{~mA})$, available through screw terminals;
- if selected electric quantity (single-phase/three-phase, RMS voltage/RMS current/active power/cos ϕ) is greater than MaxIN (reg.40030, 40031 floating point): normalized measure (reg. 40217) is equal to 10000 and analog output is $100 \%(5 \mathrm{~V}, 10 \mathrm{~V}, 20 \mathrm{~mA}$), available through screw terminals;
- if selected electric quantity (single-phase/three-phase, RMS voltage/RMS current/active power/cos ϕ) is between MinIN and MaxIN, analog output (current/voltage) is directly proportional to the selected electric quantity and it is available through screw terminals.

To choose if electric quantity is single-phase (it is possible to choose which phase: A, B or C) or three-phase, set reg. 40025.

RS485 serial port and power supply

			33	\oslash	GND		
POWER	26	\varnothing	$10 \div 40$ VDC	$19 \div 28$ VAC	RS485	32	\oslash
SUPPLY	25	\oslash	A				
			SERIAL PORT	31	\oslash		

Functioning

The S203T module allows to detect and capture the following electric quantity: RMS voltage, RMS current, active power, reactive power, apparent power, frequency, cos ϕ, energy. For each quantity, it is possible to read phase A, phase B, phase C and three-phase value (except for frequency).

The measure ranges for RMS voltage, RMS current, active power, reactive power, apparent power, energy, $\cos \Phi$, frequency are shown in the following table.

Possible measures (electric quantities)	Measurement scale range
RMS voltage	$0 \ldots 600 \mathrm{Vac}$
RMS current	$(0 \ldots 25$ or $0 \ldots 100) \mathrm{mA} \cdot \mathrm{CT}$
Active power	$(0 \ldots 15$ or $0 \ldots 60) \mathrm{W} \cdot \mathrm{CT}$
Reactive power	$(0 \ldots 15$ or $0 \ldots 60) \mathrm{VAR} \cdot \mathrm{CT}$
Apparent power	$(0 \ldots 15$ or $0 \ldots 60) \mathrm{VA} \cdot \mathrm{CT}$
Energy	$/$
Cos Φ	$0 \ldots 1$
Frequency	$40 \ldots 70 \mathrm{~Hz}$

The S203T module allows to read floating point measures (for every quantity) and normalized values (except for energy and frequency); in particular, energy values are kept stored if module is power off.

T-8 RMS voltage, RMS current, active power, frequency, energy are measured by S203T directly (for each phase A, B, C); reactive power, apparent power, $\cos \Phi$ and all three-phase values are obtained through processing by s203T.

Possible measures	Symbol	Measured value	Calculated value	Value
RMS voltage for phase A,B,C	$\mathrm{V}_{\mathrm{A}} \mathrm{V}_{\mathrm{B}} \mathrm{V}_{\mathrm{C}}$	\bullet		1
Average RMS voltage (three- phase)	V		\bullet	$\left(V_{A}+V_{B}+V_{C}\right) / 3$
RMS current for phase A,B,C	$\mathrm{I}_{\mathrm{A}} \mathrm{IB}_{\mathrm{B}} \mathrm{IC}_{C}$	\bullet		1
Average RMS current (three-phase)	I		\bullet	$\left(I_{A}+I_{B}+I_{C}\right) / 3$
Active power for phase A,B,C	$\mathrm{PA}_{\text {A }} \mathrm{PB}_{\mathrm{B}} \mathrm{PC}^{\text {c }}$	\bullet		1
Active power (three-phase)	P		\bullet	$\mathrm{P}_{A}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{C}$
Reactive power for phase A,B,C	$Q_{A} Q_{B} Q_{c}$		\bullet	$\sqrt{S_{A, B, C}^{2}-P_{A, B, C}^{2}}$
Reactive power (three-phase)	Q		\bullet	$\mathrm{Q}_{\mathrm{A}}+\mathrm{Q}_{\mathrm{B}}+\mathrm{Q}_{\mathrm{C}}$
Apparent power for phase A,B,C	$\mathrm{S}_{\mathrm{A}} \mathrm{SB}_{\mathrm{B}} \mathrm{Sc}_{C}$		\bullet	$\mathrm{V}_{\mathrm{A}, \mathrm{B}, \mathrm{C}} \cdot \mathrm{l}_{\mathrm{A}, \mathrm{B}, \mathrm{C}}$
Apparent power (three-phase)	S		-	$S_{A}+S_{B}+S_{C}$
Energy for phase A,B,C	$\mathrm{E}_{\text {A }} \mathrm{E}_{\mathrm{B}} \mathrm{E}_{C}$	\bullet		$/$
Energy (three-phase)	E		-	$E_{A}+E_{B}+E_{C}$
CosФ for phase A,B,C	$\begin{array}{ll} \cos \phi \text { А } \\ \cos \phi С & \cos \phi \text { B } \\ \hline \end{array}$		\bullet	$\mathrm{Pa}_{\mathrm{A}, \mathrm{B}, \mathrm{C}} \mathrm{S}_{\mathrm{A}, \mathrm{B}, \mathrm{C}}$
CosФ (three-phase)	$\cos \phi$		-	P/S
Frequency (*)	f	\bullet		1

$10-8$
(*) It is possible to use the S203T module as frequency meter to measure frequencies between 40 Hz and 70 Hz . To measure RMS voltage, RMS current, active power, reactive power, apparent power, energy, $\cos \Phi$, the signal has to have an accurate frequency (about 50 Hz or 60 Hz).

It is possible to compensate the network frequency: energy and power measures correction for 50 Hz or 60 Hz (if network frequency fluctuation is greater than 30 mHz).

Dip-switches table

In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).

BAUD-RATE (Dip-Switches: SW1)						
1	2	Meaning				
		Baud-rate=9600 Baud				
	-	Baud-rate=19200 Baud				
\bullet		Baud-rate=38400 Baud				
\bullet	\bullet	Baud-rate=57600 Baud				
ADDRESS (Dip-Switches: SW1)						
3	4	5	6	7	8	Meaning
						Address and
					-	Address=1
				\bullet		Address=2
				\bullet	\bullet	Address=3
			\bullet			Address=4
X	X	X	X	X	X
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	Address=63

Np=turn number of primary; Ns=turn number of secondary.
RS485 Register table

	Current transformer turns-ratio ($\mathrm{Ns} / \mathrm{Np}$) setting. This value affects: RMS current floating-point value, active power floating-point value, reactive power floating-point value, apparent power floating-point value, energy floating-point value (both single-phase and three-phase); this value does not affect normalized values. Np =turn number of primary Ns=turn number of secondary		$\begin{aligned} & 1000 \\ & (=\mathrm{Ns} / \mathrm{Np}) \end{aligned}$	
OUT phase	Word	R/W		40025
	Output-electric value (see screw terminals: 34, 35, 36, and Dip-switches SW2-6 and SW2-7) is referred to one of the following phases: $0=$ phase A 1=phase B 2=phase C Any other value of reg.40025=three-phase value			
MinIN MSW	FP32bit_MSW	R/W		40028
MinIN LSW	FP32bit_LSW	R/W		40029
	Input-electric value corresponding to minimum normalized value and minimum output-electric value. To choose which phase corresponds to normalized value, set reg.40025; to choose which input-electric value corresponds to normalized value, set Dip-Switches SW2-6 and SW2-7 (RMS voltage, RMS current, active power, $\cos \phi$). For RMS voltage, MinIN is [V]; for RMS current, MinIN is [mA]; for active power, MinIN is $[W]$; for $\cos \phi$, MinIN is a dimensionless number		0	
MaxIN MSW	FP32bit_MSW	R/W		40030
MaxIN LSW	FP32bit_LSW	R/W		40031
	Input-electric value corresponding to max normalized value and max output-electric value. To choose which phase corresponds to normalized value, set reg.40025; to choose which input-electric value corresponds to normalized value, set Dip-Switches SW2-6 and SW2-7 (RMS voltage, RMS current, active power, cos ϕ). For RMS voltage, MaxIN is [V]; for RMS current, MaxIN is [mA]; for active power, MaxIN is [W]; for $\cos \phi$, MaxIN is a dimensionless number		600	
Normalized Measure	Between:0; 10000 Word	R		40217
	Normalized measure of input: this value is referred to reg. 40028, 40029 (Floating point) and reg. 40030, 40031 (Floating point). To know which phase corresponds to normalized value, see reg.40025; to know which inputelectric value corresponds to normalized value, see DipSwitches SW2-6 and SW2-7 configuration (RMS voltage, RMS current, active power, cos ϕ). Reg. 40217 is equal to 0, if selected floating point value is less than reg.40028,40029 (FP) Reg. 40217 is equal to 10000 , if selected floating point value is greater than 40030,40031 (FP) Reg. 40217 is directly proportional to input electrical value, for any other value (saturation value: 11000)		/	
VoltageA	FP32bit_MSW	R		40135

Current3PH LSW		FP32bit_LSW	R		40150
	RMS current electrical measure of input [mArms] for threephase $\left(I_{A}+I_{B}+I_{C}\right) / 3$. This value depends on reg.40026, 40027			/	
CurrentA	Between: 0; 10000	Word	R		40197
	RMS current normalized value for phase A. This value is regardless of reg.40026, 40027			/	
CurrentB	Between: 0; 10000	Word	R		40198
	RMS current normalized value for phase B. This value is regardless of reg.40026, 40027			/	
CurrentC	Between: 0; 10000	Word	R		40199
	RMS current normalized value for phase C. This value is regardless of reg.40026, 40027			/	
Current3PH	Between: 0; 10000	Word	R		40200
	RMS current normalized value for three-phase. This value is regardless of reg. 40026,40027			/	
	ACTIVE POWER				
ActivePowA MSW		FP32bit_MSW	R		40151
ActivePowA LSW		FP32bit_LSW	R		40152
	Active power electrical measure of input [W] for phase A. This value depends on reg.40026, 40027			/	
ActivePowB MSW		FP32bit_MSW	R		40153
ActivePowB LSW		FP32bit_LSW	R		40154
	Active power electrical measure of input [W] for phase B. This value depends on reg.40026, 40027			/	
ActivePowC MSW		FP32bit_MSW	R		40155
ActivePowC LSW		FP32bit_LSW	R		40156
	Active power electrical measure of input [W] for phase C. This value depends on reg.40026, 40027			1	
ActivePow3PH MSW		FP32bit_MSW	R		40157
ActivePow3PH LSW		FP32bit_LSW	R		40158
	Active power electrical measure of input [W] for threephase $\left(P_{A}+P_{B}+P_{C}\right) / 3$. This value depends on reg.40026, 40027			/	
ActivePowA	Between: 0; 10000	Word	R		40201
	Active power normalized value for phase A. This value is regardless of reg.40026, 40027			/	
ActivePowB	Between: 0; 10000	Word	R		40202
	Active power normalized value for phase B. This value is regardless of reg.40026, 40027			/	
ActivePowC	Between: 0; 10000	Word	R		40203
	Active power normalized value for phase C. This value is regardless of reg.40026, 40027			/	
ActivePow3PH	Between: 0; 10000	Word	R		40204
	Active power normalized value for three-phase. This value is regardless of reg.40026, 40027			/	
	REACTIVE POWER				
ReactivePowA		FP32bit_MSW	R		40159

MSW					
ReactivePowA LSW		FP32bit_LSW	R		40160
	Reactive power electrical measure of input [VAR] for phase A. This value depends on reg.40026, 40027			/	
ReactivePowB MSW		FP32bit_MSW	R		40161
ReactivePowB LSW		FP32bit_LSW	R		40162
	Reactive power electrical measure of input [VAR] for phase B. This value depends on reg.40026, 40027			1	
ReactivePowC MSW		FP32bit_MSW	R		40163
ReactivePowC LSW		FP32bit_LSW	R		40164
	Reactive power electrical measure of input [VAR] for phase C. This value depends on reg.40026, 40027			/	
ReactivePow3 PH MSW		FP32bit_MSW	R		40165
$\begin{aligned} & \text { ReactivePow3 } \\ & \text { PH LSW } \end{aligned}$		FP32bit_LSW	R		40166
	Reactive power electrical measure of input [VAR] for three-phase $\left(Q_{A}+Q_{B}+Q_{C}\right) / 3$. This value depends on reg.40026, 40027			1	
ReactivePowA	Between: -10000; 10000	Word	R		40205
	Reactive power normalized value for phase A. This value is regardless of reg.40026, 40027			/	
ReactivePowB	Between: -10000; 10000	Word	R		40206
	Reactive power normalized value for phase B. This value is regardless of reg.40026, 40027			/	
ReactivePowC	Between: -10000; 10000	Word	R		40207
	Reactive power normalized value for phase C. This value is regardless of reg.40026, 40027			/	
ReactivePow3 PH	Between: -10000; 10000	Word	R		40208
	Reactive power normalized value for three-phase. This value is regardless of reg.40026, 40027			/	

APPARENT POWER					
ApparentPowA MSW		FP32bit_MSW	R		40167
ApparentPowA LSW		FP32bit_LSW	R		40168
	Apparent power electrical measure of input [VA] for phase A. This value depends on reg. 40026,40027			/	
ApparentPowB MSW		FP32bit_MSW	R		40169
ApparentPowB LSW		FP32bit_LSW	R		40170
	Apparent power electrical measure of input [VA] for phase B. This value depends on reg. 40026,40027			/	
ApparentPow C MSW		FP32bit_MSW	R		40171
ApparentPow C LSW		FP32bit_LSW	R		40172
	Apparent power electrical measure of input [VA] for phase C. This value depends on reg. 40026,40027			/	
ApparentPow3 PH MSW		FP32bit_MSW	R		40173

$\begin{aligned} & \text { ApparentPow3 } \\ & \text { PH LSW } \end{aligned}$		FP32bit_LSW	R		40174
	Apparent power electrical measure of input [VA] for threephase $\left(\mathrm{S}_{\mathrm{A}}+\mathrm{S}_{\mathrm{B}}+\mathrm{S}_{\mathrm{C}}\right) / 3$. This value depends on reg.40026, 40027			1	
ApparentPowA	Between: 0; 10000	Word	R		40209
	Apparent power normalized value for phase A. This value is regardless of reg.40026, 40027			1	
ApparentPowB	Between: 0; 10000	Word	R		40210
	Apparent power normalized value for phase B. This value is regardless of reg.40026, 40027			1	
$\begin{aligned} & \text { ApparentPow } \\ & \text { C } \end{aligned}$	Between: 0; 10000	Word	R		40211
	Apparent power normalized value for phase C. This value is regardless of reg.40026, 40027			1	
ApparentPow3 PH	Between: 0; 10000	Word	R		40212
	Apparent power normalized value for three-phase. This value is regardless of reg.40026, 40027			1	
	ENERGY				
EnergyA MSW		FP32bit_MSW	R		40185
EnergyA LSW		FP32bit_LSW	R		40186
	Energy electrical measure of input [Wh] for phase A.			1	
EnergyB MSW		FP32bit_MSW	R		40187
EnergyB LSW		FP32bit_LSW	R		40188
	Energy electrical measure of input [Wh] for phase B.			1	
EnergyC MSW		FP32bit_MSW	R		40189
EnergyC LSW		FP32bit_LSW	R		40190
	Energy electrical measure of input [Wh] for phase C.			1	
$\begin{aligned} & \text { Energy3PH } \\ & \text { MSW } \end{aligned}$		FP32bit_MSW	R		40191
$\begin{aligned} & \text { Energy3PH } \\ & \text { LSW } \end{aligned}$		FP32bit_LSW	R		40192
	Energy electrical measure of input [Wh] for three-phase $\left(E_{A}+E_{B}+E_{C}\right) / 3$.			1	
	COS ¢				
Cos¢A MSW		FP32bit_MSW	R		40175
CostA LSW		FP32bit_LSW	R		40176
	Cos ϕ electrical measure of input [dimensionless number] for phase A			1	
Cos¢B MSW		FP32bit_MSW	R		40177
Cos¢B LSW		FP32bit_LSW	R		40178
	Cos $\begin{gathered}\text { electrical measure of input [dimensionless number] }\end{gathered}$ for phase B			1	
CospC MSW		FP32bit_MSW	R		40179
CospC LSW		FP32bit_LSW	R		40180
	Cosh electrical measure of input [VA] for phase C			1	
Cosф3PH MSW		FP32bit_MSW	R		40181
Cosф3PH LSW		FP32bit_LSW	R		40182
	Cosh electrical measure of input [VA] for three-phase (P/S)			1	
$\operatorname{Cos} \phi \mathrm{A}$	Between: -10000; 10000	Word	R		40213

LEDs for signalling

In the front-side panel there are 4 LEDs and their state refers to important operating conditions of the module.

LED	LED status	Meaning
PWR	Constant light	The module power is on
ERR	Blinking light	Measure of voltage: <40Vac (at least one of the phase used)
	Constant light	The module has at least one of the errors described in RS485 Registers table
	Constant light	Verify if the bus connection is corrected
	Blinking light	The module received a data packet
TX	Blinking light	The module sent a data packet

Easy-SETUP

To configure the Seneca Z-PC Line modules, it is possible to use Easy-SETUP software,
Free-downloadable from the www.seneca.it; the configuration can be performed by RS232 or RS485 bus communication.

