MANUALE UTENTE

Z-8TC-SI-LAB

CONVERTITORE PER TERMOCOPPIE CON ADC A 24BIT AD 8 CANALI

SENECA S.r.I.

Via Austria 26 – 35127 – Z.I. - PADOVA (PD) - ITALY Tel. +39.049.8705355 – 8705355 Fax +39 049.8706287

www.seneca.it

ATTENZIONE

SENECA non garantisce che tutte le specifiche e/o gli aspetti del prodotto e del firmware, ivi incluso, risponderanno alle esigenze dell'effettiva applicazione finale pur essendo, il prodotto di cui alla presente documentazione, rispondente a criteri costruttivi secondo le tecniche dello stato dell'arte.

L'utilizzatore si assume ogni responsabilità e/o rischio segnatamente alla configurazione del prodotto per il raggiungimento dei risultati previsti in relazione all'installazione e/o applicazione finale specifica.

SENECA, previ accordi al caso di specie, può fornire attività di consulenza per la buona riuscita dell'applicazione finale, ma in nessun caso può essere ritenuta responsabile per il buon funzionamento della stessa.

Il prodotto SENECA è un prodotto avanzato, il cui funzionamento è specificato nella documentazione tecnica fornita con il prodotto stesso e/o scaricabile, anche in un momento antecedente all'acquisto, dal sito internet www.seneca.it.

SENECA adotta una politica di continuo sviluppo riservandosi, pertanto, il diritto di effettuare e/o introdurre - senza necessità di preavviso alcuno – modifiche e/o miglioramenti su qualsiasi prodotto descritto nella presente documentazione.

Il prodotto quivi descritto può essere utilizzato solo ed esclusivamente da personale qualificato per la specifica attività ed in conformità con la relativa documentazione tecnica avendo riguardo, in particolare modo, alle avvertenze di sicurezza.

Il personale qualificato è colui che, sulla base della propria formazione, competenza ed esperienza, è in grado di identificare i rischi ed evitare potenziali pericoli che potrebbero verificarsi nell'utilizzo di questo prodotto.

I prodotti SENECA possono essere utilizzati esclusivamente per le applicazioni e nelle modalità descritte nella documentazione tecnica relativa ai prodotti stessi.

Al fine di garantire il buon funzionamento e prevenire l'insorgere di malfunzionamenti, il trasporto, lo stoccaggio, l'installazione, l'assemblaggio, la manutenzione dei prodotti SENECA devono essere eseguiti nel rispetto delle avvertenze di sicurezza e delle condizioni ambientali specificate nella presente documentazione.

La responsabilità di SENECA in relazione ai propri prodotti è regolata dalle condizioni generali di vendita scaricabili dal sito www.seneca.it.

SENECA e/o i suoi dipendenti, nei limiti della normativa applicabile, non saranno in ogni caso ritenuti responsabili di eventuali mancati guadagni e/o vendite, perdite di dati e/o informazioni, maggiori costi sostenuti per merci e/o servizi sostitutivi, danni a cose e/o persone, interruzioni di attività e/o erogazione di servizi, di eventuali danni diretti, indiretti, incidentali, patrimoniali e non patrimoniali, consequenziali in qualsiasi modalità causati e/o cagionati, dovuti a negligenza, imprudenza, imperizia e/o altre responsabilità derivanti dall'installazione, utilizzo e/o impossibilità di utilizzo del prodotto.

CONTACT US	
Technical support	supporto@seneca.it
Product information	commerciale@seneca.it

Questo documento è di proprietà di SENECA srl. La duplicazione e la riproduzione sono vietate, se non autorizzate

Document revisions

DATE	REVISION	NOTES	AUTHOR
12/10/2022	0	Prima revisione	MM
19/12/2022	1	Fix Sommario	MM
20/12/2022	2	Fix Registri modbus	MM
30/03/2023	3	Aggiunti Registri Modbus	MM
30/11/2023	5	Added COMMAND Modbus Registers	MM
24/06/2025	6	Added new CMRR and DMRR tables for new Hardware "B"	MM

INDICE

1.	INTRODUZIONE6
1.1.	DESCRIZIONE6
2.	TABELLA CMRR E DMRR PER HARDWARE "B"7
3.	TIPO DI TERMOCOPPIE SUPPORTATE7
4.	MISURA DEL GIUNTO FREDDO7
5.	MISURE E TEMPI DI RISPOSTA8
5.1.	TEMPI DI CAMPIONAMENTO E TEMPO DI AGGIORNAMENTO DELLE MISURES
5.2.	FILTRO8
5.3.	TEMPI DI RISPOSTA DEL MODBUS8
6.	CONFIGURAZIONE DEL DISPOSITIVO9
7.	CONNESSIONE USB E RIPRISTINO DELLA CONFIGURAZIONE9
8.	AGGIORNAMENTO DEL FIRMWARE10
9.	PROTOCOLLO DI COMUNICAZIONE MODBUS11
9.1.	CODICI FUNZIONE MODBUS SUPPORTATI11
10.	TAVOLA DEI REGISTRI MODBUS12
10.1.	NUMERAZIONE DEGLI INDIRIZZI MODBUS "0 BASED" O "1 BASED"12
10.2.	NUMERAZIONE DEGLI INDIRIZZI MODBUS CON CONVENZIONE "0 BASED" 13

Page 4

	NUMERAZIONE DEGLI INDIRIZZI MODBUS CON	
13	ARD)	(STAN
		40.4
	CONVENZIONE DEI BIT ALL'INTERNO DI UN RE ER	
	CONVENZIONE DEI BYTE MSB E LSB ALL'II	
14	S HOLDING REGISTER	MODB
IN DUE REGISTRI MODRUS	RAPPRESENTAZIONE DI UN VALORE A 32 BIT	10 6
	G REGISTER CONSECUTIVI	
54)15	TIPI DI DATO FLOATING POINT A 32 BIT (IEEE 7	10.7.
AV HOLDING DEGISTEDS	Z-8TC-SI: TAVOLA DEI REGISTRI MODBUS	10 0
	ION CODE 3)	

1 INTRODUZIONE

Questo manuale utente estende le informazioni dal manuale di installazione sulla configurazione del dispositivo. Utilizzare il manuale di installazione per maggiori informazioni.

ATTENZIONE!

In ogni caso, SENECA s.r.l. o i suoi fornitori non saranno responsabili per la perdita di dati / incassi o per danni consequenziali o incidentali dovuti a negligenza o cattiva/impropria gestione del dispositivo, anche se SENECA è ben consapevole di questi possibili danni.

SENECA, le sue consociate, affiliate, società del gruppo, i suoi fornitori e rivenditori non garantiscono che le funzioni soddisfino pienamente le aspettative del cliente o che il dispositivo, il firmware e il software non debbano avere errori o funzionare continuativamente.

1.1. DESCRIZIONE

Z-8TC-SI è un convertitore per termocoppie con otto canali di misura indipendenti e isolati dotato di un convertitore analogico digitale con una risoluzione di 24 bit.

L'isolamento è relativo sia all'alimentazione che alla porta di comunicazione RS485.

Il dispositivo misura il valore delle termocoppie e le rende disponibili attraverso la porta RS485 utilizzando il protocollo Modbus RTU.

Il dispositivo è in grado di rilevare la rottura del sensore (burnout).

Anche a temperatura ambiente costante, le precisioni dichiarate si raggiungono dopo almeno 30 minuti dall'accensione del dispositivo.

2. TABELLA CMRR E DMRR PER HARDWARE "B"

Nella seguente tabella sono riportati i valori del Common Mode Rejection Ratio e del Differential Mode Rejection Ratio in base al tempo di campionamento dei canali.

Tempo di campionamento	DMRR @50 Hz	DMRR @60 Hz	CMRR
100 ms	>70 dB	>50 dB	>120 dB
200 ms	>75 dB	>75 dB	>120 dB
400 ms	>85 dB	>85 dB	>120 dB

3. TIPO DI TERMOCOPPIE SUPPORTATE

I sensori supportati sono:

SENSORE	NORMA	RANGE MISURA
J	EN 60584-1:1997	-210 ÷ +1200 °C
K	EN 60584-1:1997	-200 ÷ +1372 °C
R	EN 60584-1:1997	-50 ÷ +1768 °C
S	EN 60584-1:1997	-50 ÷ +1768 °C
Т	EN 60584-1:1997	-200 ÷ +400 °C
В	EN 60584-1:1997	+250 ÷ +1820 °C
E	EN 60584-1:1997	-200 ÷ +1000 °C
N	EN 60584-1:1997	-200 ÷ +1300 °C
L	Gost 8.585-2001	-200 ÷ +800°C

Ogni canale è indipendente, è quindi possibile utilizzare anche sensori diversi negli 8 canali.

4. MISURA DEL GIUNTO FREDDO

La misura del giunto freddo è effettuata con 4 sensori posizionati vicino ai 4 morsetti di misura.

È possibile attivare o meno la correzione di giunto freddo in modo che la misura possa essere corretta anche con una eventuale apparecchiatura esterna.

È necessario regolare la compensazione del giunto freddo per ciascun canale utilizzando il parametro offset.

La compensazione interna del giunto freddo utilizza un sensore la cui distanza dal morsetto varia in ogni canale, l'utilizzo di questa funzione può, quindi, comportare differenze tra i valori misurati dei canali.

5. MISURE E TEMPI DI RISPOSTA

5.1. TEMPI DI CAMPIONAMENTO E TEMPO DI AGGIORNAMENTO DELLE MISURE

Il tempo di campionamento è configurabile dai 25 ms ai 400 ms per canale, in particolare:

TEMPO DI CAMPIONAMENTO DEI							
CANALI							
25 ms							
50 ms							
100 ms							
200 ms							
400 ms							

Per il calcolo del tempo di aggiornamento di un canale si consideri il seguente esempio:

Attivando 8 canali e impostando un tempo di campionamento di 25 ms su tutti, si ottiene un aggiornamento delle misure sul canale 1 ogni: 25*8 = 200 ms.

5.2. **FILTRO**

A ciascun canale è possibile inserire un filtro passa basso per stabilizzare la misura, si tratta di un filtro in media mobile da 10 campioni.

5.3. TEMPI DI RISPOSTA DEL MODBUS

Modbus Response Time: 5 ms (tipico).

6. CONFIGURAZIONE DEL DISPOSITIVO

Il dispositivo è configurabile attraverso il software Easy Setup o Easy Setup 2, di seguito le configurazioni:

TIPO SENSORE: permette di selezionare il tipo di sensore collegato al canale, è anche possibile disattivare il canale in caso di non utilizzo.

SE GUASTO CARICA: Permette di sostituire (oppure no) al valore misurato un valore di sicurezza di temperatura/mV impostato dall'utente in caso di guasto. Il guasto può essere determinato da:

- 1) Sensore oltre i valori di misura
- 2) Rottura del sensore (burnout)

VALORE DI SICUREZZA: È il valore che viene visualizzato in caso di fail.

COMPENSAZIONE DEL GIUNTO FREDDO: Attiva o no la compensazione interna del giunto freddo.

FILTRAGGIO: Permette di attivare il filtro sul canale selezionato, il filtraggio permette di ottenere una misura più lenta ma stabile.

VELOCITA' CANALE: Permette di impostare il tempo di campionamento del canale

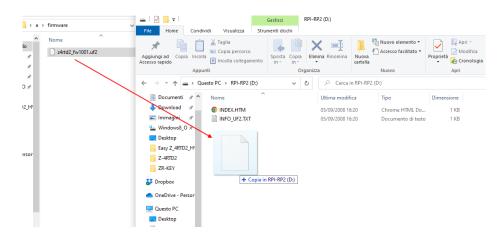
CONFIGURAZIONE MORSETTI: Permette di scegliere la configurazione dei morsetti di misura secondo il modello Z-8TC-SI oppure Z-8TC-SI-LAB.

INTERPRETAZIONE DEI FLOATING POINT: Permette di impostare se i registri in Floating Point a singola precisione (32 bit) sono da interpretare con il valore più significativo sulla word alta o sulla word bassa. **OFFSET CANALE**: Permette di impostare il valore di offset della misura.

7. CONNESSIONE USB E RIPRISTINO DELLA CONFIGURAZIONE

La porta frontale USB consente una semplice connessione finalizzata alla configurazione del dispositivo tramite il software di configurazione.

Qualora si presenti la necessità di ripristinare la configurazione di fabbrica dello strumento utilizzare il software di configurazione.


8. AGGIORNAMENTO DEL FIRMWARE

Attraverso la porta USB è possibile effettuare l'aggiornamento del firmware. Per aggiornare il firmware:

- 1) Scollegare il dispositivo dall'alimentazione;
- 2) Portare il dip switch 9 ad ON
- 3) Ora il dispositivo è in modalità "aggiornamento firmware" (il led TX rimane acceso), collegare il cavo USB al PC
- 4) Alimentare il dispositivo
- 5) Il dispositivo verrà visualizzato nel PC come unità esterna "RP1-RP2"

6) Copiare il nuovo firmware (estensione uf2) nella root dell'unità "RP1-RP2"

Una volta copiato il file con il firmware il dispositivo eseguirà automaticamente un riavvio

- 7) Togliere alimentazione al dispositivo
- 8) Portare il dip switch 9 ad OFF, ora il dispositivo è in modalità "funzionamento normale"
- 9) Alimentare il dispositivo
- 10) È possibile verificare che l'aggiornamento fw abbia avuto successo collegando il dispositivo al software Easy Setup, in basso a sinistra è riportata la revisione firmware

9. PROTOCOLLO DI COMUNICAZIONE MODBUS

Il protocollo di comunicazione supportato è:

ModBUS RTU Slave (sia dalla porta RS485 che dalla porta USB)

Per ulteriori informazioni su questi protocolli, consultare il sito Web: http://www.modbus.org/specs.php.

9.1. CODICI FUNZIONE MODBUS SUPPORTATI

Sono supportate le seguenti funzioni ModBUS:

Read Holding Register (function 3)
 Write Single Register (function 6)
 Write Multiple registers (function 16)

Tutti i valori a 32 bit sono contenuti in 2 registri consecutivi

Tutti i valori a 64 bit sono contenuti in 4 registri consecutivi

Eventuali registri con RW* (contenuti in memoria flash) possono essere scritti un massimo di circa 10000 volte

Deve essere cura del programmatore PLC / Master ModBUS non superare questo limite

10. TAVOLA DEI REGISTRI MODBUS

Nelle tavole dei registri sono usate le seguenti abbreviazioni:

MS	Most Significant
LS	Least Significant
MSBIT	Most Significant Bit
LSBIT	Least Significant Bit
MMSW	"Most" Most Significant Word (16bit)
MSW	Most Significant Word (16bit)
LSW	Least Significant Word (16bit)
LLSW	"Least" Least Significant Word (16bit)
RO	Read Only
RW*	Read-Write: REGISTRI CONTENUTI IN MEMORIA FLASH: SCRIVIBILI AL MASSIMO
IXVV	CIRCA 10000 VOLTE
UNSIGNED 16 BIT	Registro intero senza segno che può assumere valori da 0 a 65535
SIGNED 16 BIT	Registro intero con segno che può assumere valori da -32768 a +32767
UNSIGNED 32 BIT	Registro intero senza segno che può assumere valori da 0 a 4294967296
SIGNED 32 BIT	Registro intero con segno che può assumere valori da -2147483648 a 2147483647
UNSIGNED 64 BIT	Registro intero senza segno che può assumere valori da 0 a
UNSIGNED 04 BIT	18.446.744.073.709.551.615
SIGNED 64 BIT	Registro intero con segno che può assumere valori da -2^63 a 2^63-1
FLOAT 32 BIT	Registro a virgola mobile a 32 bit, a precisione singola (IEEE 754)
	https://en.wikipedia.org/wiki/IEEE_754
BIT	Registro booleano, che può assumere i valori 0 (false) o 1 (true)

10.1. NUMERAZIONE DEGLI INDIRIZZI MODBUS "O BASED" O "1 BASED"

I registri Holding Register secondo lo standard ModBUS sono indirizzabili da 0 a 65535, esistono 2 diverse convenzioni per la numerazione degli indirizzi: la "0 BASED" e la "1 BASED".

Per maggiore chiarezza Seneca riporta le proprie tabelle dei registri in entrambe le convenzioni.

ATTENZIONE!

LEGGERE ATTENTAMENTE LA DOCUMENTAZIONE DEL DISPOSITIVO MASTER MODBUS AL FINE DI CAPIRE QUALE DELLE DUE CONVENZIONI IL COSTRUTTORE HA DECISO DI UTILIZZARE.

10.2. NUMERAZIONE DEGLI INDIRIZZI MODBUS CON CONVENZIONE "0 BASED"

La numerazione è del tipo:

INDIRIZZO MODBUS HOLDING REGISTER (OFFSET)	SIGNIFICATO
0	PRIMO REGISTRO
1	SECONDO REGISTRO
2	TERZO REGISTRO
3	QUARTO REGISTRO
4	QUINTO REGISTRO

Per cui il primo registro si trova all'indirizzo 0.

Nelle tabelle che seguono questa convenzione è indicata con "OFFSET INDIRIZZO".

10.3. NUMERAZIONE DEGLI INDIRIZZI MODBUS CON CONVENZIONE "1 BASED" (STANDARD)

La numerazione è quella stabilita dal consorzio Modbus ed è del tipo:

INDIRIZZO MODBUS HOLDING REGISTER 4x	SIGNIFICATO
40001	PRIMO REGISTRO
40002	SECONDO REGISTRO
40003	TERZO REGISTRO
40004	QUARTO REGISTRO
40005	QUINTO REGISTRO

Nelle tabelle che seguono questa convenzione è indicata con "INDIRIZZO 4x" poiché viene aggiunto un 4 all'indirizzo in modo che il primo registro ModBUS sia 40001.

È anche possibile una ulteriore convenzione dove viene omesso il numero 4 davanti all'indirizzo del registro:

INDIRIZZO MODBUS HOLDING SENZA 4x	SIGNIFICATO
1	PRIMO REGISTRO
2	SECONDO REGISTRO
3	TERZO REGISTRO
4	QUARTO REGISTRO
5	QUINTO REGISTRO

10.4. CONVENZIONE DEI BIT ALL'INTERNO DI UN REGISTRO MODBUS HOLDING REGISTER

Un registro ModBUS Holding Register è composto da 16 bit con la seguente convenzione:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Ad esempio, se il valore del registro in decimale è

12300

il valore 12300 in esadecimale vale:

0x300C

l'esadecimale 0x300C in valore binario vale:

11 0000 0000 1100

Quindi, usando la convenzione di cui sopra otteniamo:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |

10.5. CONVENZIONE DEI BYTE MSB e LSB ALL'INTERNO DI UN REGISTRO MODBUS HOLDING REGISTER

Un registro ModBUS Holding Register è composto da 16 bit con la seguente convenzione:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Si definisce Byte LSB (Least Significant Byte) gli 8 bit che vanno da Bit 0 a Bit 7 compresi, si definisce Byte MSB (Most Significant Byte) gli 8 bit che vanno da Bit 8 a Bit 15 compresi:

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			BYTE	MSB							BYTE	ELSB			

10.6. RAPPRESENTAZIONE DI UN VALORE A 32 BIT IN DUE REGISTRI MODBUS HOLDING REGISTER CONSECUTIVI

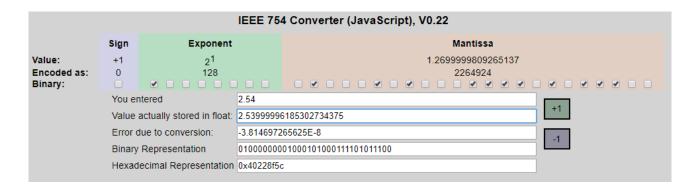
La rappresentazione di un valore a 32 bit nei registri Holding Register in ModBUS è fatta utilizzando 2 registri consecutivi Holding Register (un registro Holding Register è da 16 bit). Per ottenere il valore a 32 bit è necessario leggere quindi due registri consecutivi:

Ad esempio se il registro 40064 contiene i 16 bit più significativi (MSW) mentre il registro 40065 i 16 bit meno significativi (LSW) il valore a 32 bit si ottiene componendo i 2 registri:

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					4000	64 MOS	ST SIG	NIFICA	NT W	ORD					
BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	40065 LEAST SIGNIFICANT WORD														

$$Value_{32bit} = Register_{LSW} + (Register_{MSW} * 65536)$$

Nei registri di lettura è possibile scambiare il word più significativo con quello meno significativo quindi è possibile ottenere il 40064 come LSW e il 40065 come MSW.


10.7. TIPI DI DATO FLOATING POINT A 32 BIT (IEEE 754)

Lo standard IEEE 754 (https://en.wikipedia.org/wiki/IEEE_754) definisce il formato per la rappresentazione dei numeri in virgola mobile.

Come già detto poiché si tratta di un tipo dati a 32 bit la sua rappresentazione occupa due registri holding register da 16 bit.

Per ottenere una conversione binaria / esadecimale di un valore Floating point si può fare riferimento ad un convertitore online a questo indirizzo:

http://www.h-schmidt.net/FloatConverter/IEEE754.html

Utilizzando l'ultima rappresentazione il valore 2.54 è rappresentato a 32 bit come:

0x40228F5C

Poiché abbiamo a disposizione registri a 16 bit il valore va diviso in MSW e LSW:

0x4022 (16418 decimale) sono i 16 bit più significativi (MSW) mentre 0x8F5C (36700 decimale) sono i 16 bit meno significativi (LSW).

10.8. Z-8TC-SI: TAVOLA DEI REGISTRI MODBUS 4x HOLDING REGISTERS (FUNCTION CODE 3)

ADDRESS (4x)	OFFSET	REGISTER	ORDER	CHANNEL	DESCRIPTION	R/W	ТҮРЕ
40001	0	MACHINE ID	-	-	Device identification	RO	UNSIGNED 16 BIT
40002	1	MEASURE ERRORS	-	18	Cold Junctions and Burnout/Out Of Range Errors (0 = OK, 1 = ERROR) Bit[15]=CJ Error IN1&IN2 Bit[14]=CJ Error IN3&IN4 Bit[13]=CJ Error IN5&IN6 Bit[12]=CJ Error IN7&IN8 Bit[11]=Burnout/Out of Range IN1 Bit[10]=Burnout/Out of Range IN2 Bit[9]= Burnout/Out of Range IN3 Bit[8]= Burnout/Out of Range IN4 Bit[7]= Burnout/Out of Range IN5 Bit[6]= Burnout/Out of Range IN6 Bit[5]= Burnout/Out of Range IN6 Bit[5]= Burnout/Out of Range IN7 Bit[4]= Burnout/Out of Range IN7	RO	UNSIGNED 16 BIT
40003	2	INTEGER MEASURE	-	1	Integer measure [°C/10] or [10*mV]	RO	SIGNED 16 BIT
40004	3	INTEGER MEASURE	-	2	Integer measure [°C/10] or [10*mV]	RO	SIGNED 16 BIT
40005	4	INTEGER MEASURE	-	3	Integer measure [°C/10] or [10*mV]	RO	SIGNED 16 BIT
40006	5	INTEGER MEASURE	-	4	Integer measure [°C/10] or [10*mV]	RO	SIGNED 16 BIT
40007	6	INTEGER MEASURE	-	5	Integer measure [°C/10] or [10*mV]	RO	SIGNED 16 BIT
40008	7	INTEGER MEASURE	-	6	Integer measure [°C/10] or [10*mV]	RO	SIGNED 16 BIT
40009	8	INTEGER MEASURE	-	7	Integer measure [°C/10] or [10*mV]	RO	SIGNED 16 BIT

Manuale Utente

		=====					SIGNED 16
40010	9	INTEGER MEASURE	-	8	Integer measure [°C/10] or [10*mV]	RO	BIT
40011	10	FLOAT MEASURE	MSW	1	Floating Point	RO	FLOAT 32
40012	11		LSW		Measure [°C] or [mv]		
40013	12	FLOAT MEASURE	MSW	2	Floating Point	RO	FLOAT 32
40014	13		LSW		Measure [°C] or [mv]		
40015	14	FLOAT MEASURE	MSW	3	Floating Point	RO	FLOAT 32
40016	15		LSW		Measure [°C] or [mv]		
40017	16	FLOAT MEASURE	MSW	4	Floating Point	RO	FLOAT 32
40018	17		LSW		Measure [°C] or [mv]		
40019	18	FLOAT MEASURE	MSW	5	Floating Point	RO	FLOAT 32
40020	19		LSW		Measure [°C] or [mv]		
40021	20	FLOAT MEASURE	MSW	6	Floating Point	RO	FLOAT 32
40022	21		LSW		Measure [°C] or [mv]		
40023	22	FLOAT MEASURE	MSW	7	Floating Point	RO	FLOAT 32
40024	23		LSW		Measure [°C] or [mv]		
40025	24	FLOAT MEASURE	MSW	8	Floating Point	RO	FLOAT 32
40026	25		LSW		Measure [°C] or [mv]		
40027	26	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40028	27	MEASURE CJ	-	1, 2	Cold Junction measure [°C/10]	RO	SIGNED 16 BIT
40029	28	MEASURE CJ	-	3, 4	Cold Junction measure [°C/10]	RO	SIGNED 16 BIT
40030	29	MEASURE CJ	-	5, 6	Cold Junction measure [°C/10]	RO	SIGNED 16 BIT
40031	30	MEASURE CJ	-	7, 8	Cold Junction measure [°C/10]	RO	SIGNED 16 BIT
40032	31	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40033	32	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40034	33	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40035	34	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40036	35	FIRMWARE REVISION	-	-	-	-	UNSIGNED 16 BIT

40037	36	FLASH ERRORS	-	1, 2, 3, 4	FLASH ERRORS (0 = OK, 1 = ERROR) Bit[13]= FLASH ERROR IN1&IN2 Bit[8]= CRC ERROR IN1&IN2 Bit[5]= FLASH ERROR IN3&IN4 Bit[0]= CRC ERROR IN3&IN4	RO	UNSIGNED 16 BIT
40038	37	FLASH ERRORS	-	5, 6, 7, 8	FLASH ERRORS (0 = OK, 1 = ERROR) Bit[13]= FLASH ERROR IN5&IN6 Bit[8]= CRC ERROR IN5&IN6 Bit[5]= FLASH ERROR IN7&IN8 Bit[0]= CRC ERROR	RO	UNSIGNED 16 BIT
40039	38	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40040	39	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40041	40	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40042	41	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40043	42	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40044	43	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40045	44	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40046	45	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40047	46	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40048	47	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40049	48	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40050	49	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40051	50	RESERVED	-	-	-	-	UNSIGNED
40052	51	ADDRESS_PARITY	-	-	Bit[15:8] Modbus Address RS485: 0255 Bit[7:0] Parity: 0=none 1=even 2=odd	RW*	16 BIT UNSIGNED 16 BIT
40053	52	BAUDRATE_RS485	-	-	Bit[15:8] Baudrate: 0=4800 1=9600	RW*	UNSIGNED 16 BIT

2=19200 3=38400

					4=57600 5=115200 6=1200 7=2400		
40054	53	INPUTS CONFIG	-	1	CHANNEL CONFIGURATION Bit[12:10] Filter: 0=NO, 1=10 elements moving average Bit[9:6] TC TYPE: 0= J 1= K 2= R 3= S 4= T 5= B 6= E 7= N 8= L 9= mV Bit[4]: Cold Junction Compensation: 0= no 1= yes Bit[2:0] Acquisition Speed: 0= disabled, 1= 25ms, 2= 50ms, 3= 100ms, 4= 200ms, 5= 400ms	RW*	UNSIGNED 16 BIT
40055	54	INPUT USER CONFIG	-	2	CHANNEL CONFIGURATION Bit[12:10] Filter: 0=NO, 1=10 elements moving average Bit[9:6] TC TYPE: 0= J 1= K 2= R 3= S 4= T 5= B 6= E 7= N 8= L 9= mV Bit[4]: Cold Junction Compensation: 0= no 1= yes Bit[2:0] Acquisition Speed: 0= disabled, 1= 25ms, 2= 50ms, 3= 100ms, 4= 200ms, 5= 400ms	RW*	UNSIGNED 16 BIT
40056	55	INPUT USER CONFIG	-	3	CHANNEL CONFIGURATION Bit[12:10] Filter: 0=NO, 1=10 elements moving average Bit[9:6] TC TYPE: 0= J 1= K 2= R 3= S 4= T 5= B 6= E 7= N 8= L 9= mV Bit[4]: Cold Junction	RW*	UNSIGNED 16 BIT

					Compensation: 0= no 1= yes Bit[2:0] Acquisition Speed: 0= disabled, 1= 25ms, 2= 50ms, 3= 100ms, 4= 200ms, 5= 400ms		
40057	56	INPUT USER CONFIG	-	4	CHANNEL CONFIGURATION Bit[12:10] Filter: 0=NO, 1=10 elements moving average Bit[9:6] TC TYPE: 0= J 1= K 2= R 3= S 4= T 5= B 6= E 7= N 8= L 9= mV Bit[4]: Cold Junction Compensation: 0= no 1= yes Bit[2:0] Acquisition Speed: 0= disabled, 1= 25ms, 2= 50ms, 3= 100ms, 4= 200ms, 5= 400ms	RW*	UNSIGNED 16 BIT
40058	57	INPUT USER CONFIG	-	5	CHANNEL CONFIGURATION Bit[12:10] Filter: 0=NO, 1=10 elements moving average Bit[9:6] TC TYPE: 0= J 1= K 2= R 3= S 4= T 5= B 6= E 7= N 8= L 9= mV Bit[4]: Cold Junction Compensation: 0= no 1= yes Bit[2:0] Acquisition Speed: 0= disabled, 1= 25ms, 2= 50ms, 3= 100ms, 4= 200ms, 5= 400ms	RW*	UNSIGNED 16 BIT

40059	58	INPUT USER CONFIG	-	6	CHANNEL CONFIGURATION Bit[12:10] Filter: 0=NO, 1=10 elements moving average Bit[9:6] TC TYPE: 0= J 1= K 2= R 3= S 4= T	RW*	UNSIGNED 16 BIT
					5= B 6= E 7= N 8= L 9= mV Bit[4]: Cold Junction Compensation : 0= no 1= yes Bit[2:0] Acquisition Speed: 0= disabled, 1= 25ms, 2= 50ms, 3= 100ms, 4= 200ms, 5= 400ms		
40060	59	INPUT USER CONFIG	-	7	CHANNEL CONFIGURATION Bit[12:10] Filter: 0=NO, 1=10 elements moving average Bit[9:6] TC TYPE: 0= J 1= K 2= R 3= S 4= T 5= B 6= E 7= N 8= L 9= mV Bit[4]: Cold Junction Compensation: 0= no 1= yes Bit[2:0] Acquisition Speed: 0= disabled, 1= 25ms, 2= 50ms, 3= 100ms, 4= 200ms, 5= 400ms	RW*	UNSIGNED 16 BIT
40061	60	INPUT USER CONFIG	-	8	CHANNEL CONFIGURATION Bit[12:10] Filter: 0=NO, 1=10 elements moving average Bit[9:6] TC TYPE: 0= J 1= K 2= R 3= S 4= T 5= B 6= E 7= N 8= L 9= mV Bit[4]: Cold Junction Compensation: 0= no 1= yes	RW*	UNSIGNED 16 BIT

40062	61	CONFIGURATION	_	_	Bit[2:0] Acquisition Speed: 0= disabled, 1= 25ms, 2= 50ms, 3= 100ms, 4= 200ms, 5= 400ms	RW*	UNSIGNED
70002		CONTIGUNATION			CONFIGURATIONS Bit[15] Floating point 0= MSW First 1= LSW First Bit[7]= Load Fault Value IN1 (1 = ON, 0		16 BIT
40063	62	FAULT VALUE	-	1	FAULT VALUE [°C/10] OR [mV/100]	RW*	SIGNED 16 BIT
40064	63	FAULT VALUE	-	2	FAULT VALUE [°C/10] OR [mV/100]	RW*	SIGNED 16 BIT
40065	64	FAULT VALUE	-	3	FAULT VALUE [°C/10] OR [mV/100]	RW*	SIGNED 16 BIT

40066	65	FAULT VALUE	-	4	FAULT VALUE [°C/10] OR [mV/100]	RW*	SIGNED 16 BIT
40067	66	FAULT VALUE	-	5	FAULT VALUE [°C/10] OR [mV/100]	RW*	SIGNED 16 BIT
40068	67	FAULT VALUE	-	6	FAULT VALUE [°C/10] OR [mV/100]	RW*	SIGNED 16 BIT
40069	68	FAULT VALUE	-	7	FAULT VALUE [°C/10] OR [mV/100]	RW*	SIGNED 16 BIT
40070	69	FAULT VALUE	-	8	FAULT VALUE [°C/10] OR [mV/100]	RW*	SIGNED 16 BIT
40071	70	ERRORS2	-	-	BIT[15]=OVERRANGE IN1 BIT[14]=OVERRANGE IN2 BIT[13]=OVERRANGE IN3 BIT[12]=OVERRANGE IN4 BIT[11]=OVERRANGE IN5 BIT[10]=OVERRANGE IN6 BIT[9]=OVERRANGE IN7 BIT[8]=OVERRANGE IN8 BIT[7]=BURNOUT IN1 BIT[6]=BURNOUT IN2 BIT[5]=BURNOUT IN3 BIT[4]=BURNOUT IN4 BIT[3]=BURNOUT IN5 BIT[2]=BURNOUT IN6 BIT[1]=BURNOUT IN7 BIT[0]=BURNOUT IN7	-	UNSIGNED 16 BIT
40072	71	CONNECTION TYPE	-	-	THERMOCOUPLES CONNECTION TYPE Bit[0] 0= Z-8TC-SI 1= Z-8TC-SI-LAB	RW*	UNSIGNED 16 BIT
40073	72	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40074	73	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40075	74	RESERVED	-	-	-	-	FLOAT 32
40076	75						
40077	76	COMMAND	-	-	Write: 49568 (decimal) for Save the actual configuration in Flash then perform a reboot 52428 (decimal) for perform a reboot	RW	UNSIGNED 16 BIT
40078	77	RESERVED	-	-	-	-	UNSIGNED 16 BIT

40079	78	DIPSWITCH	-	-	DIP SWITCH STATE	RO	UNSIGNED 16 BIT
40080	79	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40081	80	RESERVED	-	-	-	-	UNSIGNED 16 BIT
40082	81	RESERVED	MSW	-	RESERVED	RO	UNSIGNED 32 BIT
40083	82		LSW	-			
40084	83	RESERVED	MSW	-	RESERVED	RO	UNSIGNED 32 BIT
40085	84		LSW	-			
40086	85	RESERVED	MSW	-	RESERVED	RO	UNSIGNED 32 BIT
40087	86		LSW	-			
40088	87	ADC RAW VALUE	MSW	1	RAW ADC VALUE	RO	UNSIGNED 32 BIT
40089	88		LSW				
40090	89	ADC RAW VALUE	MSW	2	RAW ADC VALUE	RO	UNSIGNED 32 BIT
40091	90		LSW				
40092	91	ADC RAW VALUE	MSW	3	RAW ADC VALUE	RO	UNSIGNED 32 BIT
40093	92		LSW				
40094	93	ADC RAW VALUE	MSW	4	RAW ADC VALUE	RO	UNSIGNED 32 BIT
40095	94		LSW				
40096	95	ADC RAW VALUE	MSW	5	RAW ADC VALUE	RO	UNSIGNED 32 BIT
40097	96		LSW				
40098	97	ADC RAW VALUE	MSW	6	RAW ADC VALUE	RO	UNSIGNED 32 BIT
40099	98		LSW				
40100	99	ADC RAW VALUE	MSW	7	RAW ADC VALUE	RO	UNSIGNED 32 BIT
40101	100		LSW				
40102	101	ADC RAW VALUE	MSW	8	RAW ADC VALUE	RO	UNSIGNED 32 BIT
40103	102		LSW				
40104	103	UPTIME	MSW	-	DEVICE UPTIME [ms]	RO	UNSIGNED 32 BIT
40105	104		LSW				
40106	105	RESERVED	-	-	-	RO	FLOAT 32
40107	106		-	-			
40108	107	RESERVED	-	-	-	RO	FLOAT 32
40109	108		-	-			FLOAT 22
40110	109	RESERVED	-	-	-	RO	FLOAT 32
40111	110		-	-		5.5	FLOAT 22
40112	111	RESERVED	-	-	-	RO	FLOAT 32
40113	112		-	-		F. 6	FLOAT 32
40114	113	RESERVED	-	-	-	RO	FLOAT 32
40115	114	DECED (50	-	-		D.C.	ELOAT 22
40116	115	RESERVED	-	-	-	RO	FLOAT 32
40117	116		-	-			
40118	117	RESERVED	-	-	-	RO	TLOAT 32
40119	118	DECED (ED	-	-		D.O.	ELOAT 22
40120	119	RESERVED	-	-	-	RO	FLOAT 32

Z-8TC-SI

40121	120		-	-			
40122	121	RESERVED	-	-	-	RO	FLOAT 32
40123	122		-	-		1.0	
40124	123	RESERVED	-	-	-	RO	FLOAT 32
40125	124		-	-	-		
40126	125	RESERVED	-	-	-	RO	FLOAT 32
40127	126		_				
40128	127	RESERVED	-	-	-	RO	FLOAT 32
40129	128		_	_			
40130	129	RESERVED	-	-	-	RO	FLOAT 32
40131	130		-	-			
40132	131	RESERVED	-	-	-	RO	FLOAT 32
40133	132		-	-			
40134	133	RESERVED	-	-	-	RO	FLOAT 32
40135	134		-	-			
40136	135	RESERVED	-	-	-	RO	FLOAT 32
40137	136		-	-			
40138	137	MEASURE OFFSET	MSW	1	MEASURE OFFSET [°C]	RW*	FLOAT 32
40139	138		LSW				
40140	139	MEASURE OFFSET	MSW	2	MEASURE OFFSET [°C]	RW*	FLOAT 32
40141	140		LSW				
40142	141	MEASURE OFFSET	MSW	3	MEASURE OFFSET [°C]	RW*	FLOAT 32
40143	142	-	LSW				
40144	143	MEASURE OFFSET	MSW	4	MEASURE OFFSET [°C]	RW*	FLOAT 32
40145	144		LSW				
40146	145	MEASURE OFFSET	MSW	5	MEASURE OFFSET [°C]	RW*	FLOAT 32
40147	146		LSW				
40148	147	MEASURE OFFSET	MSW		MEASURE OFFSET [°C]	RW*	FLOAT 32
40149	148		LSW				
40150	149	MEASURE OFFSET	MSW	7	MEASURE OFFSET [°C]	RW*	FLOAT 32
40151	150		LSW				
40152	151	MEASURE OFFSET	MSW	8	MEASURE OFFSET [°C]	RW*	FLOAT 32
40153	152		LSW				
40154	153	COLD JUNCTION OFFSET	MSW	1-2	COLD JUNCTION OFFSET [°C]	RW*	FLOAT 32
40155	154		LSW				
40156	155	COLD JUNCTION	MSW	3-4	COLD JUNCTION	RW*	FLOAT 32
40157	156	OFFSET	LSW		OFFSET [°C]		
40158	157	COLD JUNCTION	MSW	5-6	COLD JUNCTION OFFSET [°C]	RW*	FLOAT 32
40159	158	OFFSET	LSW				
40160	159	COLD JUNCTION OFFSET	MSW	7-8	COLD JUNCTION OFFSET [°C]	RW*	FLOAT 32
40161	160		LSW				