USER MANUAL

MULTIPROTOCOL "KEY-C" GATEWAYS SERIES

MODBUS TO CLOUD (MQTT/HTTP) GATEWAYS

SENECA S.r.I.

Via Austria 26 – 35127 – Z.I. - PADOVA (PD) - ITALY Tel. +39.049.8705355 – 8705355 Fax +39 049.8706287

www.seneca.it

CAUTION

SENECA does not guarantee that all specifications and/or aspects of the product and firmware, included in them, will meet the requirements of the actual final application even if the product referred to in this documentation is in compliance with the technological state of the art.

The user assumes full responsibility and/or risk with regard to the configuration of the product to achieve the intended results in relation to the specific installation and/or end application.

SENECA may, with prior agreement, provide consultancy services for the successful completion of the final application, but under no circumstances can it be held responsible for its proper functioning.

The SENECA product is an advanced product, the operation of which is specified in the technical documentation supplied with the product itself and/or can be downloaded, if desired prior to purchase, from the www.seneca.it website.

SENECA has a policy of continuous development and accordingly reserves the right to make and/or introduce - without prior notice - changes and/or improvements to any product described in this documentation.

The product described in this documentation may solely and exclusively be used by personnel qualified for the specific activity and in accordance with the relevant technical documentation, with particular attention being paid to the safety instructions.

Qualified personnel means personnel who, on the basis of their training, competence and experience, are able to identify risks and avoid potential hazards that could occur during the use of this product.

SENECA products may only be used for the applications and in the manner described in the technical documentation relating to the products themselves.

To ensure proper operation and prevent the occurrence of malfunctions, the transport, storage, installation, assembly, maintenance of SENECA products must comply with the safety instructions and environmental conditions specified in this documentation.

SENECA's liability in relation to its products is governed by the general conditions of sale, which can be downloaded from www.seneca.it.

Neither SENECA nor its employees, within the limits of applicable law, will in any case be liable for any lost profits and/or sales, loss of data and/or information, higher costs incurred for goods and/or replacement services, damage to property and/or persons, interruption of activities and/or provision of services, any direct, incidental, pecuniary and non-pecuniary, consequential damages in any way caused and/or caused, due to negligence, carelessness, incompetence and/or other liabilities arising from the installation, use and/or inability to use the product.

CONTACT US	
Technical support	supporto@seneca.it
Product information	commerciale@seneca.it

Document revisions

DATE	REVISION	NOTES	AUTHOR
14/02/2025	0	First revision	MM
24/02/2025	1	Added chapter on the meaning of LEDs	MM

This document is the property of SENECA srl. Copies and reproduction are prohibited unless authorised.

TABLE OF CONTENTS

1.	DESCRIPTION	6
1.1.	MODBUS, MQTT, HTTP Protocols	6
1.2.	FEATURES OF THE "KEY" SERIES COMMUNICATION PORTS	6
2.	DEVICE HARDWARE REVISION	7
3.	FLEX TECHNOLOGY FOR PROTOCOL CHANGE	8
3.1.	CHANGING PROTOCOLS WITH THE SENECA DISCOVERY DEVICE SOFTWARE	
4.	LED MEANING	
4.1.	LED MODEL Z-KEY-C (CLOUD)	10
5.	ETHERNET PORT	13
6.	FIRMWARE UPDATE	13
7.	OPERATING MODE	14
7.1.	MODBUS MASTER / CLIENT TO CLOUD	
7.2.	SIMPLIFIED TAG DIAGNOSTICS	
7.3.	EXTENDED TAG DIAGNOSTICS	
8.	"-C" GATEWAY WEBSERVERS	18
8.1.	STEP BY STEP GUIDE FOR THE FIRST ACCESS TO THE WEBSERVER	18
9.	WEBSERVER DEVICE CONFIGURATION	19
9.1.	SETUP PAGE	
	1. GENERAL CONFIGURATION PARAMETERS	
9.2.	SETUP TAG PAGE	
	Real-time view of the Modbus Gateway	
	CLOUD PAGE (MODBUS TAGS GATEWAY MODE ONLY)	
	1. DIREL ADM4.0	
	2. ONBOARD	
9.4.	CERTIFICATE/DATABASE UPDATE PAGE	30
10.	RESETTING THE DEVICE TO ITS FACTORY CONFIGURATION	31
11.	TEMPLATE EXCEL	32
12.	SERIAL TRAFFIC MONITOR	33

User Manual

13.	INSTALLING MULTIPLE DEVICES IN A NETWORK USING THE "I	HCP FAIL
ADD)RESS"	34
14.	THE DB9 RS232 CABLE	34
15.	SUPPORTED MODBUS COMMUNICATION PROTOCOLS	35
15.1.	Supported Modbus function codes	35
16.	INFORMATION ABOUT MODBUS REGISTERS	36
16.1.	NUMBERING OF "0-BASED" OR "1-BASED" MODBUS ADDRESSES	
16.2.	NUMBERING OF MODBUS ADDRESSES WITH "0-BASED" CONVENTION	
16.3.	NUMBERING OF MODBUS ADDRESSES WITH "1 BASED" CONVENTION (STANDARD)	38
16.4.	BIT CONVENTION WITHIN A MODBUS HOLDING REGISTER	39
16.5.	MSB and LSB BYTE CONVENTION WITHIN A MODBUS HOLDING REGISTER	39
16.6.	REPRESENTATION OF A 32-BIT VALUE IN TWO CONSECUTIVE MODBUS HOLDING REGISTERS	40
16.7.	TYPE OF 32-BIT FLOATING POINT DATA (IEEE 754)	41

1. DESCRIPTION

The Z-KEY-C, R-KEY-LT-C, Z-KEY-2ETH-C products allow you to acquire data from serial or ethernet buses based on Modbus protocols and send them to clouds with the MQTT(s) or http(s) protocols. Writing from cloud to Modus is also supported.

1.1. MODBUS, MQTT, HTTP PROTOCOLS

The supported Modbus protocols are:

Modbus RTU Master

Modbus RTU Slave

Modbus ASCII Master

Modbus ASCII Slave

Modbus TCP-IP Server

Modbus TCP-IP Client

For further information on these protocols, see the Modbus specification website:

http://www.modbus.org/specs.php

MQTT

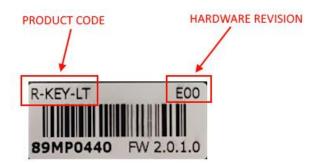
The MQTT protocol supported is version 3.1.1

The HTTP protocol for tags publication on cloud is based on API Rest

The TLS protocol supported is version 1.2

Keys certifications according to X.509 standard

1.2. FEATURES OF THE "KEY" SERIES COMMUNICATION PORTS


PRODUCT	ETHERNET PORTS No.	SERIAL PORTS NO.	ISOLATED SERIAL PORTS
Z-KEY-C	1	2	Yes, both ports
R-KEY-LT-C	1	1	NO
Z-KEY-2ETH-C	2	2	Yes, both ports

2. DEVICE HARDWARE REVISION

With a view to continuous improvement, Seneca updates and makes the hardware of its devices increasingly more sophisticated. It is possible to know the hardware revision of a product via the label on the side of the device.

An example of an R-KEY-LT product label is the following:

The label also shows the firmware revision present in the device (in this case 2.0.1.0) at the time of sale, the hardware revision (in this case) is E00.

To improve performance or extend functionality, Seneca recommends updating the firmware to the latest available version (see the section dedicated to the product on www.seneca.it).

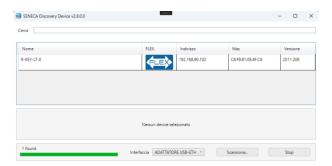
3. FLEX TECHNOLOGY FOR PROTOCOL CHANGE

Starting from the hardware revision indicated in the following table, the KEY series devices include Flex technology.

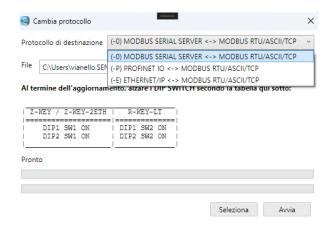
GATEWAY	FLEX TECHNOLOGY SUPPORTED BY HARDWARE REVISION
Z-KEY	"G00"
R-KEY-LT	"E00"
Z-KEY-2ETH	"C00"

Flex allows you to change the combination of industrial communication protocols supported by the gateways at will from a list of available ones, the development is continuously updated, for a complete list refer to the page: https://www.seneca.it/flex/

Some examples of supported protocols are:



The gateway then becomes "universal" and compatible with Siemens or Rockwell or Schneider systems etc... without the need to purchase different hardware.



3.1. CHANGING PROTOCOLS WITH THE SENECA DISCOVERY DEVICE SOFTWARE

From revision 2.8 the Seneca Discovery Device software identifies the devices that support the "Flex" technology:

For example, in the case in the figure it is possible to press the "Change Protocol" button and select the destination protocol from those in the list:

At the end of the operation, bring (only at the first power-on) the dip switches 1 and 2 to "ON" to force the device to default (see also the chapter "RESETTING THE DEVICE TO ITS FACTORY CONFIGURATION").

Always refer to the user manual of the communication protocol installed in the device by downloading it from the Seneca website.

4. LED MEANING

The devices are equipped with LEDs whose meaning is as follows:

4.1. LED MODEL Z-KEY-C (CLOUD)

LED	STATUS
	Steady on: device powered and IP address set
PWR	Flashing: IP address not yet set
	Off: device not powered
	Steady on: No cloud connection error
СОМ	Flashing: Cloud connection error (for more details on the error, refer to the webserver status page)
	Off: device not powered
	Flashing: data transmission on serial port #1
TX1	
	Off: no transmission on serial port #1
	Flashing: data reception on serial port #1
RX1	Steady on: check wiring on serial port #1
	Off: no reception on serial port #1
	Flashing: data transmission on serial port #2
TX2	
	Off: no transmission on serial port #2
	Flashing: data reception on serial port #2
RX2	Steady on: check wiring on serial port #2
	Off: no reception on serial port #2
	Flashing: presence of data on ethernet port
ETH ACT (GREEN)	Steady on: ethernet port connected but no data present
(Off: check wiring of the ethernet port

User Manual

ETH LNK	Steady on: ethernet cable connected
(YELLOW)	Off: check the wiring of the ethernet port

LED MODEL R-KEY-LT-C (CLOUD)

LED	STATUS		
	Steady on: device powered and IP address set		
PWR	Flashing: IP address not yet set		
	Off: device not powered		
	Steady on: No cloud connection error		
COM Flashing: Cloud connection error (for more details on the error, reference webserver status page)			
Off: device not powered			
Flashing: data transmission on serial port			
TX Off: no transmission on serial port			
	Flashing: data reception on serial port		
RX Steady on: check wiring on serial port			
Off: no reception on serial port			
	Flashing: presence of data on ethernet port		
ETH A	Steady on: ethernet port connected but no data present		
	Off: check wiring of the ethernet port		
ETH L	Steady on: ethernet cable connected		
(YELLOW)	Off: check the wiring of the ethernet port		

LED MODEL Z-KEY-2ETH-C (CLOUD)

LED	STATUS
	Steady on: device powered and IP address set
PWR	Flashing: IP address not yet set
	Off. device not powered
	Steady on: No cloud connection error
СОМ	Flashing: Cloud connection error (for more details on the error, refer to the webserver status page)
	Off. device not powered
	Flashing: data transmission on serial port #1
TX1	
	Off: no transmission on serial port #1
	Flashing: data reception on serial port #1
RX1	Steady on: check wiring on serial port #1
	Off: no reception on serial port #1
	Flashing: data transmission on serial port #2
TX2	
	Off: no transmission on serial port #2
	Flashing: data reception on serial port #2
RX2	Steady on: check wiring on serial port #2
	Off: no reception on serial port #2
	Flashing: presence of data on ethernet port #1
ET1	Steady on: ethernet port #1 connected but no data present
	Off: check wiring of ethernet port #1
	Flashing: presence of data on ethernet port #2
ET2	Steady on: ethernet port #2 connected but no data present
	Off: check wiring of ethernet port #2

5. ETHERNET PORT

The factory configuration of the Ethernet port is:

STATIC IP: 192.168.90.101 SUBNET MASK: 255.255.255.0 GATEWAY: 192.168.90.1

Multiple devices must not be inserted on the same network with the same static IP.

DO NOT CONNECT 2 OR MORE FACTORY-CONFIGURED DEVICES ON THE SAME NETWORK, OR THE DEVICE WILL NOT WORK

(CONFLICT OF IP ADDRESSES 192.168.90.101)

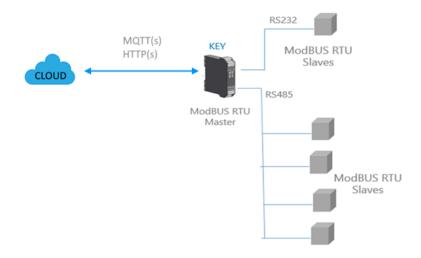
6. FIRMWARE UPDATE

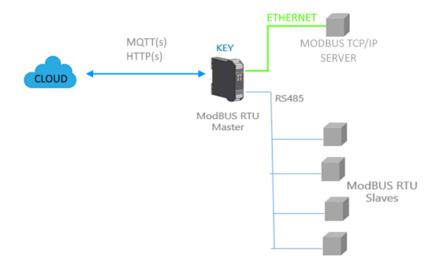
In order to improve, add or optimize the functions of the product, Seneca releases firmware updates on the device section on the www.seneca.it website

The firmware update is performed using Seneca tools or the webserver.

NOT TO DAMAGE THE DEVICE DO NOT REMOVE THE POWER SUPPLY DURING THE FIRMWARE UPDATE OPERATION.

7. OPERATING MODE


The Gateway operates in the following mode:


MODBUS SERIAL-ETHERNET MASTER/CLIENT TO CLOUD

7.1. MODBUS MASTER / CLIENT TO CLOUD

This operating mode allows you to load data from Modbus RTU/ASCII Slave and/or remote TCP Server I/Os to a cloud (and vice versa).

Below are some examples of possible connections:

The Gateway, on the field side, works as a Modbus master / Modbus Client device and on the other side as a client to the MQTT broker or HTTP server via Ethernet.

Modbus requests (read or write commands) are configured in the gateway device.

In addition to the serial devices, it is also possible to connect up to 3 remote Modbus TCP-IP servers. It is also possible to write Modbus registers from the cloud.

The Gateway simultaneously always activates a Modbus TCP-IP server.

7.2. SIMPLIFIED TAG DIAGNOSTICS

Tag diagnostics is only available in Modbus TAGs Gateway mode.

Tag diagnostics can also be viewed via the Modbus serial and Ethernet ports: via special Modbus registers.

User Manual

The first Modbus address, from which the simplified diagnostics starts, is by default 49001 (Holding Register 9000).

Each bit represents a tag with the following meaning:

1 = TAG OK

0 = TAG FAIL

The least significant bit is the status of tag no. 1

The next is the status of tag no. 2 and so on ...

For example the reading of the following registers:

49001 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 49002 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Means: TAG 1, TAG 4, TAG17, TAG 18, TAG 19, TAG 20 OK, all the others in FAIL.

At the start, all tags are in a fail state (all 0).

7.3. EXTENDED TAG DIAGNOSTICS

Tag diagnostics is only available in Modbus TAGs Gateway mode.

When a tag is in an error state it is possible to get more information using extended diagnostics.

Extended diagnostics reserves 1 byte for each tag (since the limit is 500 tags, there are 500 bytes = 250 Modbus registers for extended diagnostics).

This diagnostics is found at the end of the simplified diagnostics (default starting Modbus address is 49033, Holding register 32).

Each Modbus register contains 2 tags, so for example:

49033 TAG02 TAG01

49034 TAG04_TAG03

...

49282 TAG500_TAG499

49283 LAST_LOOP_TIME_COM1 [x1 ms]

49284 LAST_LOOP_TIME_COM2 [x1 ms]

User Manual

The meaning of the advanced diagnostics byte is:

BYTE VALUE	MEANING	NOTE
0	OK	The tag is read/written correctly
1	TIMEOUT	The response of the tag timed out, but will be
		queried again
2	DELAYED	Too many fails, tag polling is delayed (tag will
		be interrogated again after the configured
		quarantine time)
3	EXCEPTION	Modbus exception response but the tag will be
		queried again
4	CRC ERROR	CRC Modbus exception response but the tag
		will be queried again

For example:

49033 0x0000

49034 0x0002

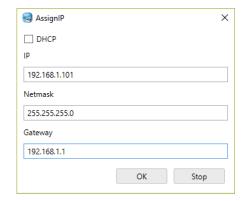
It means that:

TAGs 1 and 2 are OK (0x00 and 0x00) TAG 03 is in a delayed state (0x02) TAG 4 is OK (0x00)

LAST_LOOP_TIME_COMx is a register that contains the last interrogation time of all serial tags (in how many of 10 ms) so, for example:

49283 25 49284 42

It means that the serial 1 loop was 250ms, the serial 2 loop was 420ms.


8. "-C" GATEWAY WEBSERVERS

8.1. STEP BY STEP GUIDE FOR THE FIRST ACCESS TO THE WEBSERVER

STEP 1: POWER THE DEVICE AND CONNECT THE ETHERNET PORT, PUT THE DEVICE IN WEBSERVER MODE

SENECA DISCOVERY DEVICE SOFTWARE STEP 2

If you need to change the IP address of the device (default 192.168.90.101), launch the Seneca Discovery Device software and perform the SCAN, select the device and press the "Assign IP" button, set a configuration compatible with your PC, for example:

Confirm with OK. Now the device can be reached via Ethernet from your PC.

STEP 3 ACCESS TO THE CONFIGURATION WEBSERVER

ENTER your access credentials:

user: admin password: admin

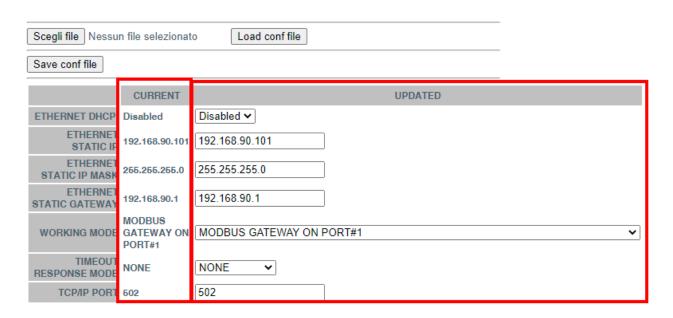
THE WEB BROWSERS WHICH HAVE BEEN TESTED FOR COMPATIBILITY WITH THE DEVICE WEBSERVER ARE:

MOZILLA FIREFOX AND GOOGLE CHROME.
THEREFORE, THE OPERATION WITH OTHER BROWSERS IS NOT GUARANTEED

9. WEBSERVER DEVICE CONFIGURATION

THE WEB BROWSERS WHICH HAVE BEEN TESTED FOR COMPATIBILITY WITH THE DEVICE WEBSERVER ARE:

MOZILLA FIREFOX AND GOOGLE CHROME.
THEREFORE, THE OPERATION WITH OTHER BROWSERS IS NOT GUARANTEED


ATTENTION!

AFTER THE FIRST ACCESS CHANGE USER NAME AND PASSWORD IN ORDER TO PREVENT ACCESS TO THE DEVICE TO UNAUTHORIZED PEOPLE.

ATTENTION!

IF THE PARAMETERS TO ACCESS THE WEBSERVER HAVE BEEN LOST, TO ACCESS IT, IT IS NECESSARY TO GO THROUGH THE PROCEDURE TO RESET THE FACTORY-SET CONFIGURATION

9.1. SETUP PAGE

The first column represents the name of the parameter, the second column "current" is the current value of the parameter. The last column "updated" is used to modify the current configuration.

When a configuration has been entered it is necessary to confirm it with the "APPLY" button, at this point the new configuration is operational.

If you want to restore the default parameters, click on the "FACTORY DEFAULT" button.

9.1.1. GENERAL CONFIGURATION PARAMETERS

The general configuration parameters are explained below:

DHCP

Disabled: A static Network Configuration is set up

Enabled: The IP address, IP mask and gateway address are obtained from the DHCP server.

The gateway address can be found by the Seneca Discovery Device software.

ETHERNET STATIC IP

Static IP address when the DHCP is disabled

ETHERNET STATIC IP MASK

Mask when the DHCP is disabled

ETHERNET STATIC GATEWAY

Gateway address when the DHCP is disabled

TCP/IP PORT

TCP-IP port for Modbus TCP-IP Server protocol (Up to a maximum of 8 clients can be connected to the gateway)

PORT#n MODBUS PROTOCOL

Select the Modbus RTU or Modbus ASCII serial protocol

PORT#n BAUDRATE

Select the baudrate of the serial port

PORT#n BIT

Select the number of bits for the serial communication.

PORT#n PARITY

Select the type of parity of the serial port (None, Even or Odd)

PORT#n STOP BITS

Set the number of stop bits of the port (1 or 2), note that if parity is set, only 1 stop bit can be used.

PORT#n TIMEOUT [ms]

User Manual

Set the waiting time for a response from the Modbus slave serial device, after this time without any response there will be a TIMEOUT.

PORT#n DELAY BETWEEN POLLS [ms]

Set the pause between two successive serial Modbus master requests.

PORT#n WRITING RETRIES (Only for Gateway Tags Modbus mode)

Set the number of attempts to write to the TAG(s) before setting the FAIL status.

PORT#n MAX READ NUM (Only for Gateway Tags Modbus mode)

Set the maximum number of registers that can be read with the multiple reading functions (the gateway will optimize readings with this maximum number of registers). It must be adjusted according to the maximum number of registers that can be read at the same time by the slave device.

PORT#1 MAX WRITE NUM (Only for Gateway Tags Modbus mode)

Set the maximum number of registers that can be written with the multiple writing functions (the gateway will optimize writings with this maximum number of registers).

WEB SERVER PORT

Set the TCP-IP port for the Webserver.

WEB SERVER AUTHENTICATION USERNAME

Set the username for accessing the Webserver (if the user name and password are left blank, no authentication is required to access the Webserver)

WEB SERVER AUTHENTICATION PASSWORD

Set the password for accessing the Webserver (if the username and password are left blank, no authentication is required to access the Webserver)

CHANGE THE DEFAULT USERNAME AND PASSWORD IN THE WEBSERVER TO RESTRICT ACCESS.

IF THE TWO PARAMETER TEXT BOXES ARE LEFT EMPTY, THE AUTHENTICATION FOR ACCESS IS REMOVED.

WEBSERVER HTTPS

It forces the webserver to use the https secure protocol instead of http one

ETHERNET IP CHANGE FROM DISCOVERY

Set whether a user is authorized to change the IP configuration from the "Seneca Discovery Device" software.

DIAGNOSTIC REGISTERS MAPPING

Set the type of register that will contain simplified and advanced diagnostics. It is possible to select between holding registers or input registers.

DIAGNOSTIC REGISTER START ADDRESS

Set the starting address for the diagnostic registers (default offset 9000 -> 49001 in case of holding registers or 39001 in case of input registers)

PORT #n TAGS QUARANTINE [s]

When a TAG is in FAIL it is placed in quarantine and is no longer interrogated for the set time.

MODBUS TCP-IP CLIENT

Enable or not the Modbus TCP-IP clients, the gateway can connect to a maximum of 3 Modbus TCP-IP servers.

TCP-IP PORT SERVER #n (Only if Modbus TCP-IP client is active)

Used to set the TCP-IP server port #n

TCP-IP ADDRESS SERVER #n (Only if Modbus TCP-IP client is active)

Used to set the IP address of the #n server

MODBUS TCP-IP CLIENT TIMEOUT [ms] (Only if Modbus TCP-IP client is active)

Used to set the connection time out for Modbus TCP-IP clients.

MODBUS TCP-IP CLIENT DELAY BETWEEN POLLS [ms] (Only if Modbus TCP-IP client is active)

Set the pause between two successive Modbus TCP-IP client requests.

MODBUS TCP-IP CLIENT WRITING RETRIES (Only if Modbus TCP-IP client is active)

Set the number of attempts to write to the TAG(s) before setting the FAIL status.

MODBUS TCP-IP CLIENT MAX READ NUM (Only if Modbus TCP-IP client is active)

Set the maximum number of registers that can be read with the multiple reading functions (the gateway will optimize readings with this maximum number of registers).

MODBUS TCP-IP CLIENT MAX WRITE NUM (Only if Modbus TCP-IP client is active)

Set the maximum number of registers that can be written with the multiple writing functions (the gateway will optimize writings with this maximum number of registers).

WATCHDOG ENABLE

Enable or disable the time restart of gateway.

User Manual

WATCHDOG TIMEOUT [hours]

Sets the time in hours after which the gateway will reboot (only if the WATCHDOG ENABLE parameter is enabled).

SYNC CLOCK WITH INTERNET TIME

Allows you to enable date/time updating via connection to NTP servers (RFC 5905).

AT EACH SWITCHING OFF THE DEVICE MUST BE ABLE TO RETRIEVE THE DATE/TIME FROM AN NTP SERVER OTHERWISE THIS WILL BE SET TO 1/1/1970 0:00

NTP SERVER 1 ADDRESS

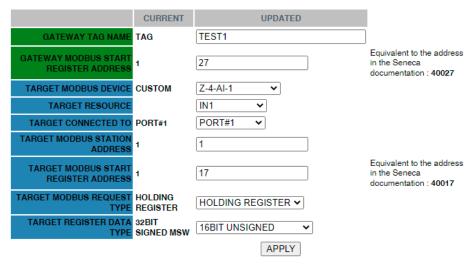
This is the IP address of the first NTP server (for example 193.204.114.232 for INRIM's NTP)

NTP SERVER 2 ADDRESS

This is the IP address of the second NTP server (in case the first one does not respond)

PLEASE REMEMBER THAT NTP SERVERS USE THE UDP 123 PORT (WHICH MUST THEREFORE ALWAYS BE OPEN IN THE CONFIGURATION OF THE NETWORK USED)

9.2. SETUP TAG PAGE


In Modbus Tags Gateway mode it is necessary to define the Modbus tags (i.e. variables), to do this it is possible to use:

- The webserver
- An excel template

In the case of complex configurations it is easier to use the last two.

In this chapter we will explain the configuration of the tag from the webserver.

To edit the TAGs via webserver, access the "Setup tag" section of the navigation menu:

GATEWAY TAG NAME

Set the mnemonic name of the tag (it will be displayed in the live view)

GATEWAY MODBUS START REGISTER ADDRESS

Set the address of the Gateway memory location where the TAG is saved, these registers are accessible both from Modbus serial and Modbus TCP-IP.

TARGET MODBUS DEVICE

Select the Modbus RTU slave model from the Seneca device database or select "custom" if you are not using a Seneca Modbus RTU slave.

TARGET RESOURCE

If you are using a Seneca Modbus RTU Slave select the resource name from the Seneca database.

TARGET CONNECTED TO PORT#

Select which serial port of the gateway the Modbus RTU slave device is connected to. (in the case of R-KEY-LT only the COM 1 port is available).

TARGET MODBUS STATION ADDRESS

Defines the Modbus Station Address (also called the Modbus node address) of the slave device.

TARGET MODBUS START REGISTER ADDRESS

Defines the starting register of the TAG to be acquired by the Modbus RTU slave.

TARGET MODBUS REQUEST TYPE

Select the type of Modbus register:

Coil

Discrete Input Holding Register Input Register

TARGET REGISTER DATA

Select the type of TAG variable:

16 BIT UNSIGNED: 1 Modbus register, from 0 to 65535

16 BIT SIGNED: 1 Modbus register, from -32768 to +32767

32 BIT UNSIGNED MSW: 2 Modbus registers, whose Modbus register with the lower address contains the most significant word, can assume values from 0 to 4294967295

32 BIT UNSIGNED LSW: 2 Modbus registers, whose Modbus register with the lower address contains the least significant word, can assume values from 0 to 4294967295

32 BIT SIGNED MSW: 2 Modbus registers, whose Modbus register with the lower address contains the most significant word, can assume values from -2147483648 to +2147483647

32 BIT SIGNED LSW: 2 Modbus registers whose Modbus, register with the lower address contains the least significant word, can assume values from -2147483648 to +2147483647

FLOAT MSW: 2 Modbus registers, whose Modbus register with the lower address contains the most significant word, single precision floating point value (IEEE 758-2008)

FLOAT LSW: 2 Modbus registers, whose Modbus register with the lower address contains the least significant word, single precision floating point value (IEEE 758-2008)

BIT: 1 Boolean Coil or Discrete Input, value true or false.

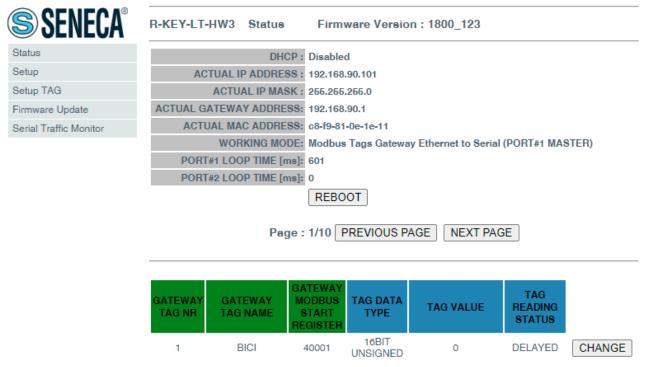
N.B. This field is automatically filled in if a Seneca slave device has been selected in the "TARGET MODBUS DEVICE" field.

All 32-bit values are stored in 2 consecutive registers, for example: The 32-bit unsigned MSW TAG 1 Totalizer is stored in the addresses 40016 and 40017: The most significant word is 40016, the least significant is 40017. So the 32bit value is obtained from the following relationship: $1 = (40017) + ((40016) \times 65536)$

1 (1001/) / ((10010) // 00000

Tag setup can be imported/exported from/to a ".cgi" file:

Note that a .cgi file can also be imported/exported from/to the Excel template.


It is also possible to add, modify, delete or move a tag.

9.2.1. REAL-TIME VIEW OF THE MODBUS GATEWAY

Once the TAGs are configured, it is possible to view the status of the Modbus communication in real time, from the Status section of the navigation menu.

The live view will show the current network configuration, operation mode and TAG information.

Tag information includes: The name of the TAG, the Modbus address of the TAG Gateway, the value of the Tag and the status of the TAG:

OK = TAG free of errors

FAIL_TO = TAG reading time out

DELAYED = Once the set retry number has been reached, the polling of the tag is delayed (the tag will be interrogated again after the configured quarantine time)

EXC = Modbus protocol exception response

9.3. CLOUD PAGE (MODBUS TAGS GATEWAY MODE ONLY)

On this page, you can configure the connection to the cloud of the configured Tags.

CLOUD PROTOCOL

Selects the protocol to use between MQTT and http

CLOUD PERIODIC SENDING INTERVAL [s]

Selects the tags sending time to the cloud

CLOUD SERVER ADDRESS

Selects the cloud address to be connected to

CLOUD SERVER PORT

Selects the server port

MQTT CLIENT ID/HTTP PATH

Defines the Client ID used in the MQTT protocol or the publication path on HTTP server

MQTT WEBSOCKET

Allows you to activate MQTT communication via Websockets

MQTT KEEP ALIVE INTERVAL [s]

This parameter defines Keep alive which ensures that the connection between the broker and client is still open and that the broker and client are aware that they are connected. When the client establishes a connection to the broker, it tells the broker a time interval in seconds. This interval defines the maximum period of time during which the broker and client may not communicate with each other.

MQTT CLEAN SESSION

This parameter defines the "clean session". When the clean session flag is set to true, the client does not want a persistent session. If the client disconnects for any reason, all information and messages queued from a previous session are lost.

MQTT MESSAGE RETAIN

Usually if a publisher publishes a message on a topic to which no one is subscribed, the message is simply discarded by the broker. However, the publisher can tell the broker to keep the last message of that topic.

MQTT QUALITY OF SERVICE [QOS]

This parameter defines the QOS of the MQTT protocol.

Can be selected from

QOS 0 (once only, without ack)

QOS 1 (at least once, with ack)

QOS 2 (once only, with ack and resend)

CLOUD AUTHENTICATION

This parameter defines whether user/password authentication should be used to access the cloud

CLOUD AUTHENTICATION USER

Broker or server username

CLOUD AUTHENTICATION PASSWORD

Broker or server password

CLOUD SSL/TLS

Defines whether to enable the SSL/TLS 1.2 encrypted security protocol

CLOUD CLIENT CERTIFICATE REQUIRED

Defines whether to manage x.509 certificates for the SSL/TLS connection

CLOUD CLIENT CERTIFICATE VALIDITY CHECK

If activated, it verifies the certificates are valid

CLOUD LOG ON CHANGE

Updates values on broker or server only upon change and no longer over time

CLOUD PUBLISH MULTIPLE TAGS

For MQTT protocol, this parameter defines whether the publish contains multiple tags or whether the device should send a publish for each tag.

For HTTP protocol, this parameter defines whether the post contains multiple tags or whether the device should send a post for each tag.

CLOUD PUBLISH TOPIC FOR LOGS

Selects the topic name for the logs using the following table:

%с	Device Client ID
%m	Device MAC Address
%j[field]	Adds double quotes " to [field]. The double quotes represent a string in JSON

for example:

If:

Device Client ID = Padova13
Publish Topic for Logs = seneca/%c/data

The data logs will be sent to the topic: Seneca/Padova13/data

CLOUD PUBLISH PAYLOAD FOR LOGS

Selects the format to be used for the payload using the following table:

%с	Device Client ID
%m	Device MAC Address
%d	date-time
%t	timestamp (number of seconds from 01/01/1970)
%tms	timestamp (number of milliseconds from 01/01/1970)
%b	bulk (format specified in "Publish Bulk Format")
%n	Tag name (only for "Publish Bulk Format")
%i	Unique ID of the variable
%v	Tag value (only in "Publish Bulk Format")
%j[field]	Adds double quotes " to [field]. The double quotes represent a string in JSON

Note: the %i placeholder adds a unique ID to the variable to be published according to the TAG order (see Tag view page)

CLOUD PUBLISH BULK FORMAT

Selects the format for "bulk mode" according to the following table:

%c	Device Client ID
%m	Device MAC Address
%d	Date/Time
%t	timestamp (number of seconds from 01/01/1970)
%n	Tag name (only for "Publish Bulk Format")
%v	Tag value (only in "Publish Bulk Format")
%j[field]	Adds double quotes " to [field]. The double quotes represent a string in JSON

CUSTOM CLOUD

If the MQTT cloud protocol is selected, you can choose between the clouds:

Direl and ONBOARD

Currently, you can configure:

Generic: Through the device's MQTT configurability, it is possible to connect to virtually any cloud

Direl ADM: Sets up the device to connect to the Direl ADM cloud **On-Board**: Sets up the device to connect to the On-Board cloud

To add other clouds to the list, you can make a request to Seneca.

9.3.1. DIREL ADM4.0

The parameters for the Direl cloud (https://www.direl.it/) are as follows:

Field	Meaning
Enable	Enables or disables the connection to the Direl ADM4.0 cloud
Username for	This is the username for writing access from the cloud to the device
Commands	
Password for	It is the password for writing access from the cloud to the device
Commands	

9.3.2. ONBOARD

Onboard is the cloud of innovation system s.r.l., for more information refer to the site: https://www.onsystem-iot.com/onboard

The parameters for the connection are:

Field	Meaning
Enable	Enables or disables the connection to the Onboard cloud
Username	This is the username for accessing the cloud
Password	This is the password for accessing the cloud

CLOUD SUBSCRIBE TOPIC FOR COMMANDS

To write a tag via MQTT, the device must receive a PUBLISH from the cloud itself with the format indicated in this field.

MQTT CA CERTIFICATE FILE (.pem)

File that represents the Root CA Certificate in .pem format.

MQTT/HTTP SERVER CERTIFICATE FILE (.pem)

File that represents the Client Certificate in .pem format.

MQTT CLIENT PRIVATE KEY FILE (.pem)

File that represents the Client key in .pem format.

9.4. CERTIFICATE/DATABASE UPDATE PAGE

On this page you can upload X.509 certificates for the webserver to the device (if https mode is enabled) and update the Seneca device database.

10. RESETTING THE DEVICE TO ITS FACTORY CONFIGURATION

The factory configuration resets all parameters to default.

To reset the device to the factory configuration it is necessary to follow the procedure below:

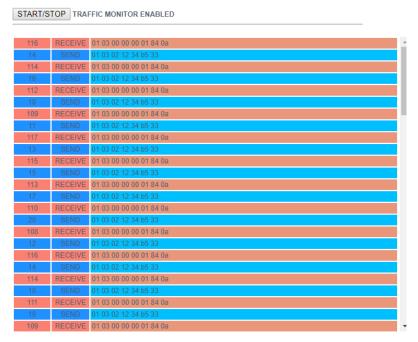
Z-KEY-C / Z-KEY-2ETH-C:

- 1) Remove power from the device
- 2) Turn dip switches 1 and 2 to ON
- 3) Power up the device and wait at least 10 seconds
- 4) Remove power from the device
- 5) Turn dip switches 1 and 2 to OFF
- 6) At the next restart the device will have loaded the factory configuration

R-KEY-LT-C:

- 1) Remove power from the device
- 2) Set dip switches 1 and 2 of SW2 to ON
- 3) Power up the device and wait at least 10 seconds
- 4) Remove power from the device
- 5) Turn 2 SW2 dip switches to OFF.
- 6) At the next restart the device will have loaded the factory configuration

11. TEMPLATE EXCEL


The preparation of the Tag configuration can be a frustrating operation if done with the webserver, so a software and a Microsoft Excel™ Template are available to create a .bin file to import into the gateway or vice versa. The model can be freely downloaded from the Seneca website.

1	Α	В	С	D	Е	F	G	Н	- 1	J	K	L	М
1		MODBUS	ТСР/ІР		SERIAL MO	ODBUS RTU			Fx	port CGI			
2	TAG NR	GATEWAY TAG NAME	GATEWAY MODBUS TCP/IP REGISTER ADDRESS	TARGET MODBUS RTU REGISTER TYPE	TARGET MODBUS RTU DATA TYPE	TARGET CONNECTED TO SERIAL PORT NR	TARGET MODBUS RTU START REGISTER	TARGET MODBUS RTU SLAVE ADDRESS	lm	file port CGI file			ECA®
3	1	TAG1	1	HOLDING REGISTER	UINT16	#1	3	2					
4	2	TAG2	2	HOLDING REGISTER	UINT16	#1	4	2					
5	3	TAG3	3	HOLDING REGISTER	UINT16	#1	5	2					
6	4	TAG4	5	HOLDING REGISTER	UINT16	#1	6	2					
7	5	TAG5	7	HOLDING REGISTER	UINT16	#1	7	2					
8	6	TAG6	8	HOLDING REGISTER	UINT16	#1	8	2					
9	7	TAG7	9	HOLDING REGISTER	UINT16	#1	9	2					
10	8	TAG8	10	HOLDING REGISTER	UINT16	#1	10	2					
11	9	TAG9	1	COIL	BIT	#1	1	3					
12	10	TAG10	2	COIL	BIT	#1	2	3					
13	11	TAG11	3	COIL	BIT	#1	3	3					
14	12	TAG12	4	COIL	BIT	#1	4	3					
15	13	TAG13	5	COIL	BIT	#1	5	3					
16	14	TAG14	6	COIL	BIT	#1	6	3					
17	15	TAG15	7	COIL	BIT	#1	7	3					
18	16	TAG16	8	COIL	BIT	#1	8	3					
19	17	TAG17	14	HOLDING REGISTER	INT16	#1	13	4					
20	18	TAG18	15	HOLDING REGISTER	INT16	#1	14	4					
21	19	TAG19	16	HOLDING REGISTER	INT16	#1	15	4					
22	20	TAG20	17	HOLDING REGISTER	INT16	#1	16	4					
23	21	TAG21	1	DISCRETE INPUT	BIT	#1	1	5					
24	22	TAG22	2	DISCRETE INPUT	BIT	#1	2	5					
25	23	TAG23	3	DISCRETE INPUT	BIT	#1	3	5					

12. SERIAL TRAFFIC MONITOR

The Serial Traffic Monitor page of the webserver shows the serial packets that the gateway is receiving and transmitting for line debugging:

The first column is the delay in milliseconds from the last packet, the second column is the direction of the packet (received from or transmitted to), the last column is the contents of the packet in hexadecimal format. Only the serial ModBUS stream is displayed.

The Traffic Monitor shows all packets received from the serial line, for example if it is a serial slave with an incorrect Modbus response:

	3870	SEND	01 03 00 00 00 0a c5 cd
	130	RECEIVE	fe fe ff df bc cf bc 9e cf f0 3e 7c bc bc ce 3e cf ce 3c df 8e 8f cf ee ce ce ce bc ce c7 c7 87 be 9e bc bc 9f 3e 3c bc bc 3e bc 8e c7 3c cf 9f be ef bc 01 03 14 42 00 08 7c 00 0b 00 01 00 01 00 00 04 00 c3 48 00 00 44 22 b8 5d
П	2070	OFNE	04.00.00.00.00.0

The Traffic Monitor will also display defective packets in yellow (for example a serial master with wrong baud rate):

18	SEND	UT 03 02 12 34 05 33
988	RECEIVE	01 03 00 00 00 01 84 0a
12	SEND	01 03 02 12 34 b5 33
20990	INVALID RECEIVE	20 e0 20 e0 20 e0 20 e0
14994	INVALID RECEIVE	20 e0 20 e0 20 e0 20 e0
14100	INVALID RECEIVE	20 e0 20 e0 20 e0 20 e0
14897	INVALID RECEIVE	20 e0 20 e0 20 e0 20 e0

13. INSTALLING MULTIPLE DEVICES IN A NETWORK USING THE "DHCP FAIL ADDRESS".

When the Gateway is configured with DHCP enabled but does not receive the DHCP server configuration within 2 minutes then it assumes a fail address.

This fail address is 169.254.x.y where x.y are the last two values from the MAC address.

In this way, if you force all devices to DHCP, you can install on the network even if there is no active DHCP server.

When the fail address has been activated (the relative LED stops flashing), you can launch the "Seneca Discovery Device" software and force the preferred IP address to all devices.

14. THE DB9 RS232 CABLE

The DB9 CABLE RS232 CABLE can be obtained from Seneca (it can also be purchased from the e-commerce website www.seneca.it) for connection with a DB9 RS232 device.

15. SUPPORTED MODBUS COMMUNICATION PROTOCOLS

The Modbus communication protocols supported are:

- Modbus RTU/ASCII master/slave (from #1 and #2 serial ports)
- Modbus TCP-IP Client (from the Ethernet port), up to 10 remote TCP-IP Modbus Servers

For more information on these protocols, see the website: http://www.modbus.org/specs.php.

15.1. SUPPORTED MODBUS FUNCTION CODES

The following Modbus functions are supported:

Read Coils (function 1)
Read Discrete Inputs (function 2)
Read Holding Registers (function 3)
Read Input Registers (function 4)

Write Single Coil (function 5)

Write Single Register (function 6)

Write multiple Coils (function 15)

Write Multiple Registers (function 16)

All 32-bit variables are contained in 2 consecutive Modbus registers All 64-bit variables are contained in 4 consecutive Modbus registers

16. INFORMATION ABOUT MODBUS REGISTERS

The following abbreviations are used in the following chapter:

MS	Most Significant									
LS	Least Significant									
MSBIT	Most Significant Bit									
LSBIT	Least Significant Bit									
MMSW	"Most" Most Significant Word (16bit)									
MSW	Most Significant Word (16bit)									
LSW	Least Significant Word (16bit)									
LLSW	"Least" Least Significant Word (16bit)									
RO	Read Only									
RW*	Read-Write: REGISTERS CONTAINED IN FLASH MEMORY: WRITABLE ABOUT									
IXVV	10,000 TIMES MAXIMUM									
RW**	Read-Write: REGISTERS THAT CAN BE WRITTEN ONLY AFTER WRITING THE									
1744	COMMAND "ENABLE WRITE CUSTOM ENERGIES = 49616"									
UNSIGNED 16 BIT	BIT Unsigned integer register that can assume values from 0 to 65535									
SIGNED 16 BIT	Signed integer register that can take values from -32768 to +32767									
UNSIGNED 32 BIT	Unsigned integer register that can assume values from 0 to 4294967296									
SIGNED 32 BIT	Signed integer register that can take values from -2147483648 to 2147483647									
UNSIGNED 64 BIT	Unsigned integer register that can assume values from 0 to 18446744073709551615									
SIGNED 64 BIT	Signed integer register that can assume values from -2^63 to 2^63-1									
FLOAT 32 BIT	32-bit, single-precision floating-point register (IEEE 754)									
I LOAT 32 DIT	https://en.wikipedia.org/wiki/IEEE_754									
BIT	Boolean register, which can take the values 0 (false) or 1 (true)									

16.1. NUMBERING OF "O-BASED" OR "1-BASED" MODBUS ADDRESSES

According to the Modbus standard the Holding Registers are addressable from 0 to 65535, there are 2 different conventions for numbering the addresses: "0-BASED" and "1-BASED".

For greater clarity, Seneca shows its register tables in both conventions.

ATTENTION!

CAREFULLY READ THE DOCUMENTATION OF THE MODBUS MASTER DEVICE IN ORDER TO UNDERSTAND WHICH OF THE TWO CONVENTIONS THE MANUFACTURER HAS DECIDED TO USE

SENECA USES THE "1 BASED" CONVENTION FOR ITS PRODUCTS

16.2. NUMBERING OF MODBUS ADDRESSES WITH "0-BASED" CONVENTION

The numbering is:

HOLDING REGISTER MODBUS ADDRESS (OFFSET)	MEANING
0	FIRST REGISTER
1	SECOND REGISTER
2	THIRD REGISTER
3	FOURTH REGISTER
4	FIFTH REGISTER

Therefore, the first register is at address 0.

In the following tables, this convention is indicated with "ADDRESS OFFSET".

16.3. NUMBERING OF MODBUS ADDRESSES WITH "1 BASED" CONVENTION (STANDARD)

The numbering is that established by the Modbus consortium and is of the type:

HOLDING REGISTER MODBUS ADDRESS 4x	MEANING
40001	FIRST REGISTER
40002	SECOND REGISTER
40003	THIRD REGISTER
40004	FOURTH REGISTER
40005	FIFTH REGISTER

This convention is indicated with "ADDRESS 4x" since a 40000 is added to the address so that the first Modbus register is 40001.

A further convention is also possible where the number 4 is omitted in front of the register address:

HOLDING MODBUS ADDRESS WITHOUT 4x	MEANING
1	FIRST REGISTER
2	SECOND REGISTER
3	THIRD REGISTER
4	FOURTH REGISTER
5	FIFTH REGISTER

16.4. BIT CONVENTION WITHIN A MODBUS HOLDING REGISTER

A Modbus Holding Register consists of 16 bits with the following convention:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

For instance, if the value of the register in decimal is

12300

the value 12300 in hexadecimal is:

0x300C

the hexadecimal 0x300C in binary value is:

11 0000 0000 1100

So, using the above convention, we get:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |

16.5. MSB AND LSB BYTE CONVENTION WITHIN A MODBUS HOLDING REGISTER

A Modbus Holding Register consists of 16 bits with the following convention:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

LSB Byte (Least Significant Byte) defines the 8 bits ranging from Bit 0 to Bit 7 included, we define MSB Byte (Most Significant Byte) the 8 bits ranging from Bit 8 to Bit 15 inclusive:

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BYTE MSB										BYTE	LSB			

16.6. REPRESENTATION OF A 32-BIT VALUE IN TWO CONSECUTIVE MODBUS HOLDING REGISTERS

The representation of a 32-bit value in the Modbus Holding Registers is made using 2 consecutive Holding Registers (a Holding Register is a 16-bit register). To obtain the 32-bit value it is therefore necessary to read two consecutive registers:

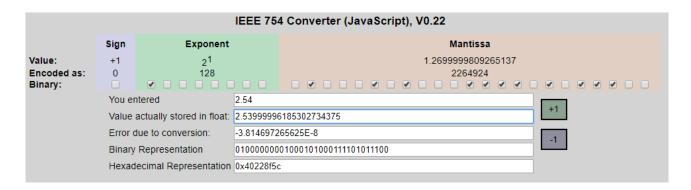
For example, if register 40064 contains the 16 most significant bits (MSW) while register 40065 contains the least significant 16 bits (LSW), the 32-bit value is obtained by composing the 2 registers:

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	40064 MOST SIGNIFICANT WORD														

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	40065 LEAST SIGNIFICANT WORD														

$$Value_{32bit} = Register_{LSW} + (Register_{MSW} * 65536)$$

In the reading registers it is possible to swap the most significant word with the least significant word, therefore it is possible to obtain 40064 as LSW and 40065 as MSW.



16.7. TYPE OF 32-BIT FLOATING POINT DATA (IEEE 754)

The IEEE 754 standard (https://en.wikipedia.org/wiki/IEEE_754) defines the format for representing floating point numbers.

As already mentioned, since it is a 32-bit data type, its representation occupies two 16-bit holding registers. To obtain a binary/hexadecimal conversion of a floating point value it is possible to refer to an online converter at this address:

http://www.h-schmidt.net/FloatConverter/IEEE754.html

Using the last representation the value 2.54 is represented at 32 bits as:

0x4022 8F5C

Since we have 16-bit registers available, the value must be divided into MSW and LSW:

0x4022 (16418 decimal) are the 16 most significant bits (MSW) while 0x8F5C (36700 decimal) are the 16 least significant bits (LSW).