MANUALE UTENTE

MSC-D

MULTIFUNCTION SMART CALIBRATOR

SENECA S.r.I.

Via Austria 26 - 35127 - Z.I. - PADOVA (PD) - ITALY Tel. +39.049.8705355 - 8705355 Fax +39 049.8706287

www.seneca.it

ATTENZIONE

SENECA non garantisce che tutte le specifiche e/o gli aspetti del prodotto e del firmware, ivi incluso, risponderanno alle esigenze dell'effettiva applicazione finale pur essendo, il prodotto di cui alla presente documentazione, rispondente a criteri costruttivi secondo le tecniche dello stato dell'arte.

L'utilizzatore si assume ogni responsabilità e/o rischio segnatamente alla configurazione del prodotto per il raggiungimento dei risultati previsti in relazione all'installazione e/o applicazione finale specifica.

SENECA, previ accordi al caso di specie, può fornire attività di consulenza per la buona riuscita dell'applicazione finale, ma in nessun caso può essere ritenuta responsabile per il buon funzionamento della stessa.

Il prodotto SENECA è un prodotto avanzato, il cui funzionamento è specificato nella documentazione tecnica fornita con il prodotto stesso e/o scaricabile, anche in un momento antecedente all'acquisto, dal sito internet www.seneca.it.

SENECA adotta una politica di continuo sviluppo riservandosi, pertanto, il diritto di effettuare e/o introdurre - senza necessità di preavviso alcuno – modifiche e/o miglioramenti su qualsiasi prodotto descritto nella presente documentazione.

Il prodotto quivi descritto può essere utilizzato solo ed esclusivamente da personale qualificato per la specifica attività ed in conformità con la relativa documentazione tecnica avendo riguardo, in particolare modo, alle avvertenze di sicurezza.

Il personale qualificato è colui che, sulla base della propria formazione, competenza ed esperienza, è in grado di identificare i rischi ed evitare potenziali pericoli che potrebbero verificarsi nell'utilizzo di questo prodotto.

I prodotti SENECA possono essere utilizzati esclusivamente per le applicazioni e nelle modalità descritte nella documentazione tecnica relativa ai prodotti stessi.

Al fine di garantire il buon funzionamento e prevenire l'insorgere di malfunzionamenti, il trasporto, lo stoccaggio, l'installazione, l'assemblaggio, la manutenzione dei prodotti SENECA devono essere eseguiti nel rispetto delle avvertenze di sicurezza e delle condizioni ambientali specificate nella presente documentazione.

La responsabilità di SENECA in relazione ai propri prodotti è regolata dalle condizioni generali di vendita scaricabili dal sito www.seneca.it.

SENECA e/o i suoi dipendenti, nei limiti della normativa applicabile, non saranno in ogni caso ritenuti responsabili di eventuali mancati guadagni e/o vendite, perdite di dati e/o informazioni, maggiori costi sostenuti per merci e/o servizi sostitutivi, danni a cose e/o persone, interruzioni di attività e/o erogazione di servizi, di eventuali danni diretti, indiretti, incidentali, patrimoniali e non patrimoniali, consequenziali in qualsiasi modalità causati e/o cagionati, dovuti a negligenza, imprudenza, imperizia e/o altre responsabilità derivanti dall'installazione, utilizzo e/o impossibilità di utilizzo del prodotto.

CONTACT US	
Technical support	supporto@seneca.it
Product information	commerciale@seneca.it

Document revisions

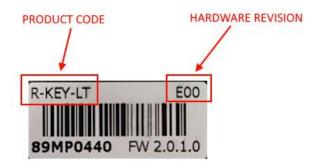
DATE	REVISION	NOTES	AUTHOR
28/01/2025	0	First revision	MM
18/02/2025	1	Modified for firmware release 130	MM
08/09/2025	2	Correzione valori cap. 2misura dei segnali.	AC
18/11/2025	3	Modificato da http a https, aggiunto cambio password al primo accesso	MM

Questo documento è di proprietà di SENECA srl. La duplicazione e la riproduzione sono vietate, se non autorizzate.

INDICE

1.	REVISIONE HARDWARE DEL DISPOSITIVO	6
2.	PRECISIONE E RISOLUZIONE DEL CALIBRATORE	7
3.	INFORMAZIONI SULLA SICUREZZA	10
4.	DESCRIZIONE	12
4.1.	LED, PULSANTI, PORTE E BOCCOLE	13
4.1.	.1. TASTO DI ACCENSIONE/SPEGNIMENTO E LED	13
4.1.	.2. PORTE, PRESE E BOCCOLE	14
5.	GUIDA ALL'UTILIZZO	15
6.	USO DEL DISPLAY	16
6.1.	Schermata iniziale	
6.1.	.1. IL MENU A SCORRIMENTO	17
7.	MENU PRINCIPALE	
7.1.	IMPOSTAZIONI GENERALI	
7.2.	IMPOSTAZIONI ETH.	
7.3.	IMPOSTAZIONI WIFI	
	.1. WI-FI STATION	
	.2. WI-FIACCESS POINT	
	.3. WI-FI SCAN	
7.4.	IMPOSTAZIONI RTC	
7.5.	IMPOSTAZIONI DI FABBRICA	23
8.	FUNZIONI DEL CALIBRATORE	
8.1.	FUNZIONAMENTO DEL CALIBRATORE COME MISURATORE DI SEGNALI	
	.1. CONTROLLI COMUNI A TUTTE LE MISURE	
	.2. IL DATALOGGER	
	FUNZIONAMENTO DEL CALIBRATORE COME GENERATORE DI SEGNALI	
	.1. CONTROLLI COMUNI A TUTTE LE GENERAZIONI	
8.2.	.2. IL GENERATORE DI RAMPE	30
9.	IL WEBSERVER	
9.1.	CONTROLLO LOCALE/REMOTO DEL CALIBRATORE	
9.2.	ACCESSO AL WEBSERVER	34
10.	ERRORI DI MISURA E GENERAZIONE	35

Manuale Utente


11.	PORTA ETHERNET	35
12.	AGGIORNAMENTO FIRMWARE	35
13.	PROTOCOLLI MODBUS DI COMUNICAZIONE SUPPORTATI	36
13.1.	CODICI FUNZIONE MODBUS SUPPORTATI	36
14.	INFORMAZIONI SUI REGISTRI MODBUS	37
14.1.	NUMERAZIONE DEGLI INDIRIZZI MODBUS "0 BASED" O "1 BASED"	38
14.2.	NUMERAZIONE DEGLI INDIRIZZI MODBUS CON CONVENZIONE "0 BASED"	
14.3.	NUMERAZIONE DEGLI INDIRIZZI MODBUS CON CONVENZIONE "1 BASED" (STANDARD)	
14.4.	CONVENZIONE DEI BIT ALL'INTERNO DI UN REGISTRO MODBUS HOLDING REGISTER	
14.5. 14.6.	CONVENZIONE DEI BYTE MSB e LSB ALL'INTERNO DI UN REGISTRO MODBUS HOLDING REGISTER RAPPRESENTAZIONE DI UN VALORE A 32 BIT IN DUE REGISTRI MODBUS HOLDING REGISTER CONSEC	
15.	GESTIONE DI MSC-D DA REGISTRI MODBUS	41
15.1.	DESCRIZIONE	41
15.2.	USO DI MSC PER EFFETTUARE MISURE	
15.2.		
15.2.		
15.2.		
15.2.		
15.2.		
15.2.		
15.2.		
15.2.		
15.2.	9. MISURA DEL NUMERO DI IMPULSI	
15.3. 15.3.		
15.3.		
15.3.		
15.3.		
15.3.		
15.3.		
15.3		

1. REVISIONE HARDWARE DEL DISPOSITIVO

In un'ottica di miglioramento continuo Seneca aggiorna e rende sempre più sofisticato l'hardware dei suoi dispositivi. È possibile conoscere la revisione hardware di un prodotto tramite l'etichetta posta nel fianco del dispositivo.

Un esempio di etichetta è il seguente:

Nell'etichetta è anche riportata la revisione di firmware presente nel dispositivo (in questo caso 2.0.1.0) al momento della vendita, la revisione hardware (in questo caso) è la E00.

Per migliorare le prestazioni o per estendere le funzionalità Seneca consiglia di aggiornare il firmware all'ultima versione disponibile (si veda nel sito www.seneca.it la sezione dedicata al prodotto).

2. PRECISIONE E RISOLUZIONE DEL CALIBRATORE

La precisione e la risoluzione dei segnali sono rappresentate nelle seguenti tabelle:

GENERAZIONE DI SEGNALI

		RANGE	PRECISIONE*	RISOLUZIONE			CMRR-
FUNZIONI	U.M	(Generazione)	(Generazione)	(Generazione)	Note	NORMA	NMRR
VOLTAGE [hi	51.00	0-26	2 222/ 2 1/	,			400 10
range]	[dc V]	(minimum)	0,02% + 3 mV	1 mV	1	-	>100 dB
VOLTAGE		40.00	0.000/ 45 1/	5),			400 10
[lo range]	[dc mV]	-10 +90	0.03% + 15 μV	5 μV	2	-	>100 dB
ACTIVE	[da A]	0.1 + .24	0.040/ 1.2.14	1 4	١ ,		> CO 4D
CURRENT PASSIVE	[dc mA]	0.1 ÷ +24	0.04% + 3 μΑ	1 μΑ	3	-	>60 dB
CURRENT	[dc mA]	0.1 ÷ +24	0.049/ 1.2 114	1 ۸	4,21,2 2		>60 dB
			0.04% + 3 μΑ	1 μΑ		-	
Pt100	[°C]	-200 ÷ +859	0.03% + 0.2°C	0,1 °C	5,19	IEC 60751	>140 dB
Pt500	[°C]	-200 ÷ +859	0.03% + 0.2°C	0,1 °C	5,20	IEC 60751	>140 dB
Pt1000	[°C]	-200 ÷ +859	0.03% + 0.2°C	0,1 °C	5,20	IEC 60751	>140 dB
						GOST	
CU50, CU100	[°C]	-180 ÷ +200	0.03% + 0.2°C	0,1 °C	15,19	6651-2009	>140 dB
Ni100, Ni120	[°C]	-80 ÷ +260	0.03% + 0.2°C	0,1 °C	16,19	DIN 43760	>100 dB
						EN 60584-	
TERMOCUPLE J	[°C]	-210 ÷ +1200	0.03% + 0.2°C	0,1 °C	12,2	1:1997	>100 dB
						EN 60584-	
TERMOCUPLE K	[°C]	-270 ÷ +1372	0.03% + 0.2°C	0,1 °C	12,2	1:1997	>100 dB
						EN 60584-	
TERMOCUPLE T	[°C]	-270 ÷ +400	0.03% + 0.1°C	0,1 °C	12,2	1:1997	>100 dB
	[0.0]	270 . 4000	0.000/ 0.000	0.4.00	40.0	EN 60584-	400 10
TERMOCUPLE E	[°C]	-270 ÷ +1000	0.03% + 0.2°C	0,1 °C	12,2	1:1997	>100 dB
	[0.0]	270	0.020/ . 0.280	0.4.%	12.2	EN 60584-	. 100 dD
TERMOCUPLE N	[°C]	-270 ÷ +1300	0.03% + 0.2°C	0,1 °C	12,2	1:1997	>100 dB
	[00]	FO: 11769	0.030/ + 0.3°C	0.5.00	12.2	EN 60584-	>100 dp
TERMOCUPLE R	[°C]	-50 ÷ +1768	0.03% + 0.3°C	0,5 °C	12,2	1:1997 EN 60584-	>100 dB
T501400UBU50	[°C]	-50 ÷ +1768	0.03% + 0.3°C	0,5 °C	12,2	1:1997	>100 dB
TERMOCUPLE S	[0]	-30 + +1708	0.03% + 0.3 C	0,5 C	12,2	EN 60584-	>100 db
TERMOCURIER	[°C]	0 ÷ +1820	0.03% + 0.3°C	0,5 °C	12,2	1:1997	>100 dB
TERMOCUPLE B	[0]	0.11020	0.0370 1 0.3 C	0,5 C	12,2	GOST	>100 db
						8.585-	
TERMOCUPLE L	[°C]	-200 ÷ +800	0.03% + 0.15°C	0,1 °C	12,2	2001	>140 dB
LOAD CELL 350	[0]	200 1 7000	535575 7 5125 6	5,2 5	,_		0 05
Ohm	[mV/V]	0 ÷ +3	0.05%	0,001	13,8	_	>100 dB
PULSES/FREQU	. , -]			-,			
ECY	[Hz]	0.1÷1000	0.02%	SEE MANUAL	1	-	-

MISURA DI SEGNALI

		RANGE	PRECISIONE	RISOLUZIONE		Note	CMRR-
FUNZIONI	U.M	(Misura)	(Misura)	(Misura)	NORMA	(Misura)	NMRR
VOLTAGE [hi		0-26					
range]	[dc V]	(minimum)	0,02% + 3 mV	1 mV	-	9	>100 dB
VOLTAGE [lo	[dc		0.02% + 10				
range]	mV]	-10 +90	μV	5 μV	-	9	>100 dB
ACTIVE	[dc						
CURRENT	mA]	0 ÷ +24	0.04% + 3 μΑ	1 μΑ	-	17	>60 dB
PASSIVE	[dc						
CURRENT	mA]	0 ÷ +24	0.04% + 3 μΑ	1 μΑ	-	18	>60 dB
			0.03% +			_	
Pt100	[°C]	-200 ÷ +850	0.2°C	0.03 °C	IEC 60751	6	>140 dB
			0.03% +			_	
Pt500	[°C]	-200 ÷ +850	0.2°C	0.1 °C	IEC 60751	6	>140 dB
2.4000	[0.0]		0.03% +	0.00.00	.=0.60==4	_	
Pt1000	[°C]	-200 ÷ +850	0.2°C	0.03 °C	IEC 60751	7	>140 dB
0.150 0.1100	[0.0]		0.03% +	0.06 °C , 0.03	GOST 8651-		
CU50, CU100	[°C]	-180 ÷ +200	0.2°C	°C	2009	6,15	>140 dB
	F0 =1		0.03% +				
Ni100, Ni120	[°C]	-60 ÷ +250	0.2°C	0.02 °C	DIN 43760	6,16	>100 dB
	50.03	-210 ÷	0.03% +		EN 60584-		
TERMOCUPLE J	[°C]	+1200	0.2°C	0.01 °C	1:1997	9,12	>100 dB
TERN 40 CURLET	[0.0]	-200 ÷	0.03% +	0.05.00	EN 60584-	0.40	400 10
TERMOCUPLE K	[°C]	+1372	0.2°C	0.05 °C	1:1997	9,12	>100 dB
TERM 40 CUIRLE T	[0.0]	200 - 400	0.03% +	0.05.00	EN 60584-	0.40	400 10
TERMOCUPLE T	[°C]	-200 ÷ +400	0.1°C	0.05 °C	1:1997	9,12	>100 dB
TERMOCURIE	[00]	-200 ÷	0.03% +	0.05.00	EN 60584-	0.12	. 100 dp
TERMOCUPLE E	[°C]	+1000	0.2°C	0.05 °C	1:1997	9,12	>100 dB
TERMOCURIE N	[00]	-200 ÷	0.03% +	0.0F °C	EN 60584-	0.12	\$ 100 dp
TERMOCUPLE N	[°C]	+1300	0.2°C	0.05 °C	1:1997	9,12	>100 dB
TERMOCUPLE R	[00]	50 1700	0.03% +	0.0F °C	EN 60584-	0.12	\$ 100 dp
TERIVIOCOPLE R	[°C]	-50 ÷ +1768	0.3°C	0.05 °C	1:1997	9,12	>100 dB
TERMOCUPLE S	[°C]	FO : 1760	0.03% + 0.3°C	0.05 °C	EN 60584-	0.12	>100 dp
TERIVIOCUPLE 3	[°C]	-50 ÷ +1768		0.05 C	1:1997	9,12	>100 dB
TERMOCUPLE B	[°C]	250 ÷ +1820	0.03% +	0.05 °C	EN 60584-	0.12	>100 40
I EKIVIOCUPLE B	[°C]	250 + 1820	0.3°C	0.05 C	1:1997	9,12	>100 dB
TEDMOCUDICI	[°C]	-200 ÷ +800	0.03% +	0.05.00	Gost 8.585-	0.12	>140 40
TERMOCUPLE L LOAD CELL 350	[°C]	-200 + +800	0.15°C	0.05 °C	2001	9,12	>140 dB
	[mV/	0 2 4	0.05%	0.001		0.14	>100 40
Ohm PULSES/FREQU	V]	0 ÷ +2.4	0.05%	0.001	-	9,14	>100 dB
•	[[]-1	0.1:10000	0.03% + 3	100 6 11-		10 11	
ECY	[Hz]	0.1÷10000	LSD	10e-6 Hz	-	10,11	-

NOTE

- 1 loutMAX = 20 mA per V < 20; loutMAX =10 mA per 20 < V <25; loutMAX = 5 mA per V > 25; impedenza d'uscita < 50 m Ω
- 2 IoutMAX = 10 mA; impedenza d'uscita < 100 m Ω
- $3 RLoad < 1K\Omega$
- 4 Tensione di loop minima 3 V, massima 28 V
- $5 \alpha = 0.00385$
- 6 Corrente di misura: 1 mA
- 7 Corrente di misura: 250 uA
- 8 Tensionedi eccitazione: da 5 a 10 V
- 9 Impedenza di ingresso: \sim 10 M Ω
- 10 Impedenza di ingresso: 1 M Ω ; Tensione da 1 a 24 V
- 11 Misura frequenza max 1 kHz
- 12 Errore Giunto freddo: 1°C tra 10 e 35°C ambiente, 2°C tra -20 e 10°C e tra 35 e 50°C ambiente
- 13 Impedenza d'uscita: 300 Ω
- 14 Tensione di eccitazione < 8 V
- $15 \alpha = 0.00428$
- $16 \alpha = 0,006178$
- 17 Caduta di tensione < 3,5 V
- 18 Tensione minima fornita: 24 V
- 19 Precisione definita con corrente di misura 1 mA e polarità rispettate
- 20 Precisione definita con corrente di misura 250 uA e polarità rispettate
- 21 Impedenza d'uscita: 3.75 MΩ
- 22 Precisione definita con tensione di alimentazione del loop a 26 V

3. INFORMAZIONI SULLA SICUREZZA

Questo manuale contiene delle norme di sicurezza che devono essere rispettate per salvaguardare l'incolumità personale e per evitare danni materiali. Le indicazioni da rispettare per garantire la sicurezza personale sono evidenziate da un simbolo a forma di triangolo aventi il seguente significato:

AVVERTENZA

Il simbolo abbinato alla parola avvertenza indica condizioni o azioni che mettono a rischio l'incolumità dell'utente.

ATTENZIONE

Il simbolo abbinato alla parola attenzione indica condizioni o azioni che potrebbero danneggiare il calibratore o le apparecchiature sottoposte a prova.

PERSONALE QUALIFICATO

Il prodotto oggetto di questa documentazione può essere utilizzato solo da personale qualificato per il rispettivo compito assegnato nel rispetto della documentazione relativa al compito, specialmente delle avvertenze di sicurezza e delle precauzioni in esse contenute. Il personale qualificato, in virtù della sua formazione ed esperienza, è in grado di riconoscere i rischi legati all'impiego di questo prodotto e di evitare possibili pericoli.

▲ ESCLUSIONE DI RESPONSABILITA'

Abbiamo controllato che il contenuto di questa documentazione corrisponda all'hardware e al software descritti. Non potendo comunque escludere eventuali differenze, non possiamo garantire una concordanza perfetta. Il contenuto di questa documentazione viene tuttavia verificato periodicamente e le eventuali correzioni o modifiche vengono inserite nelle successive edizioni.

AVVERTENZA

- Non applicare tensioni diverse o più alte di quanto indicato tra terminali, o tra qualsiasi terminale e terra (tensioni maggiori di 50Vdc)
- Non usare il calibratore se danneggiato, o se su di esso sono visibili evidenti segni di un possibile danneggiamento.
- Non rimuovere la batteria interna.
- Non usare il calibratore se opera in modo anomalo.
- Usare il pulsante di reset nel caso presenti un'anomalia nel funzionamento.
- Non toccare i terminali del calibratore durante l'utilizzo
- Per effettuare le misure usare i cavi forniti in dotazione o comunque adeguati alle misure da compiere.
- Selezionare il range appropriato per la misura o generazione desiderata.

ATTENZIONE

- Accertarsi che la batteria interna sia carica nel caso si intenda utilizzare il calibratore senza alimentazione dalla porta USB
- Usare il calibratore come descritto nel presente manuale.
- Prima di ogni misura o generazione, fare riferimento alle connessioni elettriche riportate nel manuale.
- Non usare il calibratore in ambienti che contengano polveri, gas o vapori infiammabili / esplosivi

Il calibratore MSC è stato realizzato secondo le norme EN 6101-1

4. DESCRIZIONE

Il calibratore MSC è uno strumento multi funzione portatile per la generazione e la misura dei segnali che si trovano comunemente in impianti di automazione.

È stato pensato per aiutare i professionisti che devono verificare e mettere a punto strumentazioni di elaborazione di segnali collegati a dispositivi di controllo automatici.

Diversamente da quello che il mercato offre, il calibratore MSC combina in un unico strumento simulazioni e misure attraverso un'interfaccia intuitiva e moderna.

Il calibratore di processo multifunzione MSC è uno strumento palmare, alimentato a batterie ricaricabili, che serve a misurare e a generare grandezze elettriche.

Il calibratore presenta, inoltre, le seguenti caratteristiche:

- Terminale di ingresso/uscita per termocoppie (TC) e blocco interno isotermico con compensazione automatica in temperatura della giunzione di riferimento.
- 4 boccole standard diametro 4 mm per misure a 2-3-4 fili. Protezione contro sovratensioni fino a 250 Vac.
- Connessione Ethernet e Wi-Fi.
- Gestione di segnali universali (analogici, digitali, impulsivi, elettrici, peso, temperatura)
- Elevata classe di precisione: classe 0,05% di base per ogni tipo di ingresso/uscita.
- Connettore micro usb per alimentazione.
- Porta Ethernet e Wi-F iper connessione ai PC o dispositive Mobili
- Protocollo Modbus TCP-IP supportato
- Schermo touch a colori

I segnali analogici gestiti sia in misura che generazione sono:

- Corrente mA (dc)
- Tensione V, mV (dc)
- Termocoppie, termo resistenze a due/tre o quattro fili
- Estensimetro a ponte 350 Ω (LOAD CELL)

Vengono gestiti inoltre:

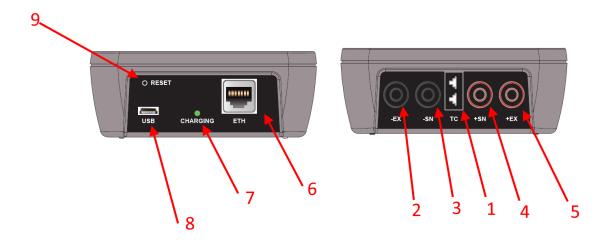
- Generazione di impulsi con durata, ampiezza in tensione e duty cycle variabile
- Misura degli impulsi con soglia regolabile
- Misura e generazione di frequenza

Il dispositivo risulta protetto contro danneggiamenti conseguenti ad erronei collegamenti come cortocircuiti e sovratensioni applicate agli ingressi (es. 230 Vac).

Il dispositivo supporta il protocollo industriale Modbus TCP-IP ed è quindi comandabile via Ethernet o Wi-Fi da macchinari esterni al dispositivo.

Sempre tramite la porta ethernet o Wi-Fi è anche possibile collegare più calibratori ai dispositivi e controllarli individualmente.

4.1. LED, PULSANTI, PORTE E BOCCOLE


4.1.1. TASTO DI ACCENSIONE/SPEGNIMENTO E LED

- 1 Tasto di accensione e spegnimento, premere il pulsante fino all'accensione dello schermo e poi rilasciare. Premere nuovamente per alcuni secondi per spegnere il calibratore.
- 2 Led Accensione dispositivo
- 3 Led Datalogger attivo
- 4 Led Alimentazione esterna presente

4.1.2. PORTE, PRESE E BOCCOLE

- 1 Presa per misura/generazione termocoppia
- 2 Boccola di misura/generazione -EX
- 3 Boccola di misura/generazione -SN
- 4 Boccola di misura/generazione +SN
- 5 Boccola di misura/generazione +EX
- 6 Porta Ethernet 10/100Mbit
- 7 Led stato ricarica batteria interna, si accende in caso la batteria sia in carica, si spegne nel caso la carica sia complete
- 8 Connettore microUSB per alimentazione
- 9 Pulsante di Reset

5. GUIDA ALL'UTILIZZO

Il calibratore è un dispositivo in grado di effettuare misure o di generare grandezze elettriche per testare dispositivi. Per procedere ad un corretto utilizzo dello strumento accertarsi di seguire i seguenti passi:

- Accendere il dispositivo.
- Attendere almeno 5 minuti affinché la temperatura dell'apparecchio si stabilizzi.
- Collegare i cavi in modo corretto a seconda del tipo di misura o generazione da effettuare: fare riferimento agli schemi di collegamento

È comunque necessario, prima dell'utilizzo, accertarsi che la batteria sia totalmente carica così da garantire la durata delle generazioni o delle misurazioni che si andranno ad effettuare. Prima di ogni utilizzo è consigliabile ricaricare lo strumento tramite il cavo USB dato in dotazione fino allo spegnimento del led segnalazione di carica della batteria posto su fondo del calibratore.

Il calibratore è in grado di mantenere i segnali da generare (impostati dall'utente) entro un determinato range di errore. Durante la generazione il calibratore verificherà costantemente il segnale generato, avvisando di un eventuale errore di generazione (dove previsto).

Il calibratore è protetto dal rischio dell'applicazione di sovratensioni temporanee. Tuttavia è bene ricordarsi che in questa eventualità il dispositivo necessita di un tempo di 15-20 minuti per ripristinare le condizioni di normalità. Se non si osserva il periodo di tempo indicato non è possibile garantire la precisione delle misure e o delle generazioni.

Poiché il negativo del dispositivo MSC-D non è allo stesso potenziale del negativo della porta USB, non è consigliabile collegarlo alla porta USB di un PC, poiché questa condizione di lavoro può interferire con il corretto funzionamento del calibratore.

6. USO DEL DISPLAY

Il display è dotato di touch capacitivo e permette di accedere alle funzionalità del dispositivo.

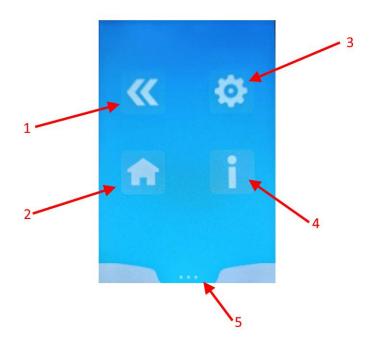
6.1. Schermata iniziale

La schermata iniziale è la seguente:

Dove:

- 1 Icona del tipo di porta abilitata tra Ethernet, Wi-Fi Station o Wi-Fi Access Point
- 2 Icona con il livello di carica della batteria
- 3 Pulsante per il menu delle funzioni di misura di segnali
- 4 Pulsante per il menu delle funzioni di generazione di segnali
- 5 Menu a scorrimento

Oltre a questo sono presenti delle informazioni di base del dispositivo.

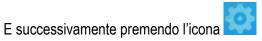


6.1.1. IL MENU A SCORRIMENTO

Il menu a scorrimento è sempre presente nelle pagine del dispositivo:

Una volta premuto permette di selezionare le seguenti icone:

Dove:


- 1 Torna alla schermata precedente
- 2 Torna alla schermata principale
- 3 Entra nelle opzioni (le opzioni cambiano a seconda della schermata)
- 4 Visualizza le informazioni di connessione (a seconda del tipo di generazione / misura che si sta eseguendo)
- 5 Chiude il menu a scorrimento

7. MENU PRINCIPALE

È possibile accedere al menu principale dalla pagina principale del calibratore, premendo il pulsante di menu a scorrimento:

Il menu permette di selezionare 3 diverse categorie di configurazioni:

7.1. IMPOSTAZIONI GENERALI

Raggruppa le seguenti impostazioni generali:

LINGUA

Permette di scegliere la lingua dell'interfaccia

ABILITA ALLARME SONORO ERRORE

Abilita o no l'allarme sonoro nel caso di errore in misura/generazione

ABILITA ALLARME SONORO BATTERIA

Abilita o no l'allarme sonoro nel caso di batteria scarica

ABILITA SUONO IN FASE DI ACCENSIONE

Abilita o no l'emissione di un sonoro in fase di accensione

TIPO DI ACCENSIONE

Premette di selezionare se l'accensione è di tipo Portatile o Automatica.

Nel caso di accensione Portatile anche se è fornita l'alimentazione esterna il dispositivo non si accenderà se non tramite la pressione dell'apposito tasto. Anche per lo spegnimento è necessario premere l'apposito pulsante. Nel caso di accensione Automatica il dispositivo si accenderà automaticamente una volta inserito il cavo di alimentazione e si spegnerà una volta staccata l'alimentazione esterna (da utilizzare su macchine di collaudo automatiche).

USA BUFFER DI MEMORIA ROTATIVO

Quando si utilizza il datalogger il dispositivo salva i dati in una memoria interna, una volta terminata lo strumento può sovrascrivere (buffer rotativo ON) o no (buffer rotativo OFF) i dati sulle registrazioni già effettuate.

LUMINOSITA'

Imposta la luminosità dello schermo, maggiore è la luminosità minore è la durata delle batterie.

ABILITA AUTOSPEGNIMENTO

Questa funzione permette di impostare un tempo oltre il quale, se non ci sono interazioni con lo schermo, lo strumento si spegnerà automaticamente. Nel caso di connessione remota disabilitare questa funzione.

TEMPO DI CAMPIONAMENTO DEL DATALOGGER

Imposta il tempo di campionamento del datalogger

UNITA' DI MISURA DELLA TEMPERATURA

Seleziona l'unità di misura delle temperature

DISPLAY OFF

Seleziona il tempo in minuti dopo il quale se non è stato toccato lo schermo questo si spegne. Una volta che lo schermo è spento, per riaccenderlo basta toccarlo. Questo parametro è importante per la durata delle batterie.

REMOTE CONTROL

Permette di abilitare o no la funzione di controllo remoto dal webserver del dispositivo.

Quando la funzione di controllo remoto è attiva non è possibile modificare la generazione o la misura di segnali da locale, quando la funzione è disattivata non è possibile modificare la generazione o la misura di segnali da locale. Le funzionalità di base del webserver (aggiornamento firmware, configurazione e download dei file di log) sono, invece, sempre disponibili.

7.2. IMPOSTAZIONI ETH.

Permette di impostare la configurazione della porta ethernet

Non è possibile attivare contemporaneamente la porta Ethernet e la porta WIFI

Ethernet Abilitata

Abilita o no la porta Ethernet

DHCP

Abilita o il DHCP client per recuperare l'indirizzo IP in modo automatico, se disabilitato l'IP è statico ed è possibile impostare i parametri:

ΙP

Indirizzo ip statico della porta ethernet

MASK

Maschera della porta ethernet

GW

Gateway della porta Ethernet

DNS

Domain Name System della porta Ethernet

7.3. IMPOSTAZIONI WIFI

Permette di impostare la configurazione della porta Wi-Fi

Non è possibile attivare contemporaneamente la porta Ethernet e la porta WIFI

La porta Wi-Fi del calibratore è configurabile nelle modalità Wi-Fi "Station" e Wi-Fi "Access Point". Nella modalità Station la porta Wi-Fi si connette ad un router Wi-Fi esistente (access point).

Nella modalità Access Point la porta Wi-Fi accetta connessioni da altri dispositivi, questo permette la connessione Wi-Fi di dispositivi quali PC o dispositivi mobili dotati di Wi-Fi.

7.3.1. WI-FI STATION

Permette la connessione del calibratore su una rete Wi-Fi esistente attraverso un Router impostato in modalità access point. Quando attivata la modalità è possibile inserire manualmente la configurazione del router a cui connettersi.

7.3.2. WI-FIACCESS POINT

Permette la creazione di una nuova rete Wi-Fi a cui connettere dispositivi Wi-Fi come PC o tablet, cellulari etc... L'indirizzo IP del calibratore è:

192.168.4.1

7.3.3. WI-FI SCAN

Quando è attivata la modalità Station o Access Point è possibile eseguire lo scan della rete per connettere il dispositivo ad una rete Wi-Fi esistente.

Premere il pulsante "SCAN" ed attendere la visualizzazione delle reti trovate. Successivamente introdurre la password della rete (gli altri parametri sono recuperati automaticamente).

A questo punto il calibratore si riavvierà in modalità Wi-Fi Station e si collegherà alla rete indicata.

Non è possibile attivare la modalità WI-FISCAN senza aver prima attivato la porta WI-FI in modalità Station o Access Point

7.4. IMPOSTAZIONI RTC

Permette di impostare data e ora del dispositivo da utilizzare per il Tag temporale del datalogger. Oltre all'inserimento della data è possibile abilitare la connessione con un server NTP per acquisire la data via

internet.

NTP ABILITATO

Se non abilitato ON/OFF se OFF permette di inserire la data/ora manuale.

SRV1

Indirizzo IP del server NTP primario

SRV2

Indirizzo IP del server NTP secondario (da utilizzare in caso di fail del primario)

SINCORNIZZAZIONE

Imposta ogni quanto sincronizzare la data/ora

GMT (min)

Imposta il fuso orario rispetto GMT in minuti (ad esempio per l'Italia GMT= 60 minuti nel caso di ora solare)

7.5. IMPOSTAZIONI DI FABBRICA

Riporta a default tutti i parametri di configurazione.

8. FUNZIONI DEL CALIBRATORE

FUNZIONI DI MISURA

Il calibratore MSC permette di misurare i seguenti segnali:

- Corrente passiva (con alimentazione fornita esternamente al calibratore)
- Corrente attiva (con alimentazione fornita dal calibratore)
- Tensione 0 V / +27 V
- Tensione -10mV / +90 mV
- Termocoppia
- Termoresistenza
- Cella di carico (strain gauge)
- Frequenza/impulsi

FUNZIONI DI GENERAZIONE

Il calibratore MSC permette di generare i seguenti segnali:

- Corrente passiva (con alimentazione fornita esternamente al calibratore)
- Corrente attiva (con alimentazione fornita dal calibratore)
- Tensione 0 V / +27 V
- Tensione -10mV / +90 mV
- Termocoppia
- Termoresistenza
- Cella di carico
- Frequenza/impulsi

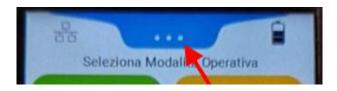
8.1. FUNZIONAMENTO DEL CALIBRATORE COME MISURATORE DI SEGNALI

8.1.1. CONTROLLI COMUNI A TUTTE LE MISURE

Di seguito vengono illustrati i controlli che sono comuni a tutte le misure:

Dove:

- 1 Tipo di misura
- 2 Valore misurato primario
- 3 Pulsante cambio tra misura primaria e secondaria
- 4 Valori statistici minimo medio massimo
- 5 Pulsante Menu Datalogger/Statistiche
- 6 Valore misurato secondario


Premendo il pulsante menu Datalogger/Statistiche si ottiene:

Dove:

- 1 Pulsante avvio/arresto del datalogger
- 2 Pulsante cancella tutti i log in memoria
- 3 Visualizzazione statistiche del datalogger
- 4 Resetta i valori Minimo Medio Massimo
- 5 Mette in pausa o fa ripartire il calcolo dei valori Minimo Medio Massimo

In tutte le misure premendo il pulsante:

È possibile premere l'icona ed accedere a tutta una serie di parametri di configurazione relativi alla misura in uso come ad esempio l'impostazione del filtraggio di misura, il tipo di giunto freddo etc...

Attendere che il dispositivo si porti ad un regime termico stabile prima di effettuare le misure con le termocoppie (tipicamente almeno 30 minuti).

ATTENZIONE!

Se la termocoppia non dispone del proprio connettore, in alternativa utilizzare le boccole più interne SN+ SN-, tenendo presente che la compensazione del giunto freddo in questo caso potrebbe risultare meno precisa.

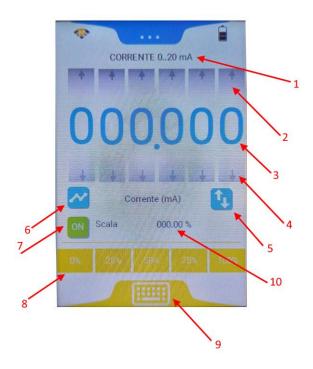
ATTENZIONE!

La misura a 4 fili della cella di carico è influenzata dalla resistenza dei conduttori che la alimentano. Se non è possibile accorciare i collegamenti tra la cella di carico e il calibratore MSC; misurando la resistenza dei soli conduttori che alimentano la cella di carico (conduttori +EX e -EX) si può calcolare il coefficiente di correzione:

$$K = \frac{350 + R_{+EX} + R_{-EX}}{350}$$

Il coefficiente ottenuto deve essere moltiplicato con il valore misurato dal calibratore per ottenere il valore reale.

8.1.2. IL DATALOGGER


Il calibratore permette di effettuare delle sessioni di registrazione tramite l'apposito pulsante come già descritto. Il tempo minimo di acquisizione è di 1 secondo.

Il download del file del datalogger in formato testo csv è possibile tramite l'apposita pagina del webserver.

8.2. FUNZIONAMENTO DEL CALIBRATORE COME GENERATORE DI SEGNALI

8.2.1. CONTROLLI COMUNI A TUTTE LE GENERAZIONI

Di seguito vengono illustrati i controlli che sono comuni a tutte le generazioni:

Dove:

- 1 Tipo di generazione
- 2 Pulsanti per aumentare il valore della singola cifra
- 3 Valore generato in uscita
- 4 Pulsanti per diminuire il valore della singola cifra
- 5 Pulsante per il cambio tra valore di generazione primario e secondario
- 6 Menu Rampe
- 7 Abilita o no l'uscita
- 8 Tasti veloci per generare l'uscita in percentuale
- 9 Tastiera per inserire il valore da generare
- 10 Valore secondario generato

In tutte le generazioni premendo il pulsante:

È possibile premere l'icona ed accedere a tutta una serie di parametri di configurazione relativi alla generazione in uso.

ATTENZIONE!

È importante notare che nella generazione di frequenza la risoluzione temporale secondo cui viene generato il segnale ad onda quadra è di 50 µs.

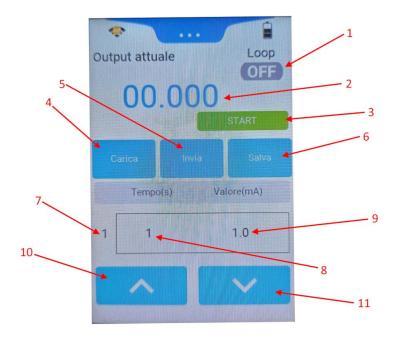
Questo implica un errore che è dipendente dal valore numerico impostato.

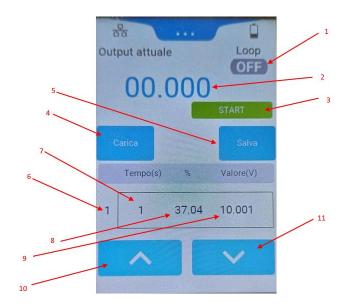
Ad esempio si voglia generare un segnale con frequenza 150 Hz il cui periodo corrispondente è di 6.666 ms: il numero di conteggi necessari per ottenere questa frequenza è ricavato tramite:

6.666 MHz /50 μ s=133.33

Il sistema provvede quindi ad arrotondare al numero intero più vicino (133) che utilizzerà per generare il segnale di uscita.

La frequenza in uscita avrà il valore:


$$Fout = \frac{1}{133 * 50 \,\mu s} = 150.37 \,Hz$$

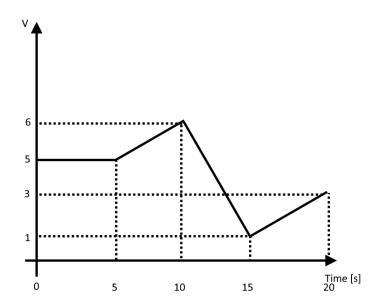

Il firmware riporterà automaticamente il valore effettivamente generato.

8.2.2. IL GENERATORE DI RAMPE

Il calibratore permette di generare delle rampe attraverso l'interfaccia qui descritta

Dove:

MSC-D


- 1 Attiva o no il loop della rampa (se OFF una volta terminata la rampa non ricomincia automaticamente)
- 2 Valore attualmente generato
- 3 Start/Stop rampa
- 4 Carica una configurazione di una rampa da un file salvato precedentemente
- 5 Salva su file l'attuale configurazione della rampa

Invia la configurazione attuale della rampa alla scheda madre

- 6 N-esimo punto della rampa
- 7 Tempo in secondi
- 8 Valore % della generazione rispetto i fondo scala
- 9 Valore che deve assumere il valore dell'uscita
- 10 Punto della rampa precedente
- 11 Punto della rampa successivo

Ad esempio si voglia generare una rampa di tensione del tipo:

Inseriamo quindi le coordinate dei punti, il punto di partenza della rampa (tempo = 0) ha il valore di 5 V, inseriamo quindi il punto 1 con tempo = 0s, Valore = 5V

Dopo 5 secondi il valore è stabile a 5V quindi inseriamo tempo = 5s, valore = 5V

Dopo altri 5 secondi il valore passa da 6V quindi inseriamo tempo = 5s, valore = 6V fino ad ottenere la seguente tabella:

Punto Numero	Tempo [s]	Valore [V]
1	0	5
2	5	5
3	5	6
4	5	1
5	5	3

Ora possiamo salvare questa rampa nel file da 1 a 5 in modo da poterla caricare in futuro con il pulsante "Salva".

Ora inviamo la rampa alla scheda madre con il pulsante "Invia".

A questo punto siamo pronti per generare la rampa con il pulsante "Start".

Per ripetere l'esecuzione della stessa rampa non è necessario inviare nuovamente la rampa alla scheda madre ma basterà premere nuovamente il pulsante "Start".

9. IL WEBSERVER

Il calibratore dispone di un webserver che permette di:

- Comandare e configurare il calibratore da remoto
- Scaricare i dati del datalogger in formato di testo CSV
- Aggiornare il firmware

9.1. CONTROLLO LOCALE/REMOTO DEL CALIBRATORE

Il webserver permette di comandare e configurare da remoto il generatore tramite l'uso di un browser web. Utilizzando il Wi-Fi, ad esempio, è possibile comandare il calibratore da un cellulare.

L'interfaccia grafica è simile a quella del display e permette le stesse funzionalità.

Per comandare il calibratore da remoto è necessario portare ad "ON" il parametro "Remote Control" del menu "General Settings".

Non è possibile comandare il calibratore contemporaneamente dal display locale e dal webserver. Se il parametro "Remote Control" è "ON" nella pagina iniziale del display compare la scritta "REMOTE MODE". Per ripristinare il funzionamento del display è necessario riportare il parametro "Remote Control" ad "OFF".

9.2. ACCESSO AL WEBSERVER

Per accedere al webserver è necessario conoscere l'indirizzo IP del dispositivo e disporre di un browser web (ad esempio Chrome).

Nel caso di connessione tramite porta ethernet con l'indirizzo di default, l'accesso al webserver avviene all'indirizzo:

https://192.168.90.101

Nel caso di connessione tramite porta Wi-Fi con il calibratore in modalità Access Point l'indirizzo del webserver del calibratore è:

https://192.168.4.1

Nel caso di connessione tramite porta Wi-Fi con il calibratore in modalità Station l'indirizzo ip è tipicamente fornito dal server DHCP del router stesso. Per conoscere l'indirizzo IP impostato accedere al menu WI-FI Station del menu principale del display.

Una volta ottenuto l'accesso al webserver, alla richiesta dello user name e della password inserire:

User name: admin Password: admin

Al primo accesso sarà poi richiesto il cambio della password.

10. ERRORI DI MISURA E GENERAZIONE

Il calibratore può rilevare degli errori sia in generazione che in misura di un segnale. Nella tabella sono indicate le tipologie di errori rilevate:

TIPO DI ERRORE	SIGNIFICATO
Errore in Generazione	La generazione impostata non è garantita entro
	l'errore dichiarato
Errore in Misura	Il segnale misurato è fuori scala

Viene inoltre rilevato un errore anche quando la tensione del loop generata esternamente supera i 29 V.

11. PORTA ETHERNET

La configurazione di fabbrica della porta ethernet è:

IP STATICO: 192.168.90.101 SUBNET MASK: 255.255.255.0 GATEWAY: 192.168.90.1

Non devono essere inseriti più dispositivi sulla stessa rete con lo stesso ip statico.

NON CONNETTERE 2 O PIU' DISPOSITIVI CON LA CONFIGURAZIONE DI FABBRICA SULLA STESSA RETE ETHERNET PENA IL NON FUNZIONAMENTO DEL DISPOSITIVO (CONFLITTO DI INDIRIZZI IP 192.168.90.101)

12. AGGIORNAMENTO FIRMWARE

Al fine di migliorare, aggiungere o ottimizzare le funzionalità del prodotto, Seneca rilascia dei firmware aggiornati sulla sezione del dispositivo nel sito internet www.seneca.it

L'aggiornamento firmware viene effettuato tramite il webserver.

PER NON DANNEGGIARE IL DISPOSITIVO È NECESSARIO CHE LE BATTERIE SIANO CARICHE E CHE L'ALIMENTAZIONE ESTERNA SIA PRESENTE.

È possibile aggiornare sia il firmware della scheda display sia il firmware della scheda madre.

L'aggiornamento del firmware della scheda display è realizzabile direttamente dal webserver, l'aggiornamento della scheda madre avviene tramite un comando inviato dal webserver e poi collegando la porta USB del dispositivo ad un software su PC.

13. PROTOCOLLI MODBUS DI COMUNICAZIONE SUPPORTATI

I protocolli di comunicazione Modbus supportati sono:

Modbus TCP-IP Server (dalla porta Ethernet o Wi-Fi) con supporto fino ad 8 Modbus Client TCP-IP remoti

Per ulteriori informazioni su questi protocolli, consultare il sito Web: https://www.modbus.org/specs.php.

13.1. CODICI FUNZIONE MODBUS SUPPORTATI

Sono supportate le seguenti funzioni Modbus:

Read Holding Registers (function 3)
 Write Single Register (function 6)
 Write Multiple Registers (function 16)

Tutte le variabili a 32 bit sono contenute in 2 registri Modbus consecutivi Tutte le variabili a 64 bit sono contenute in 4 registri Modbus consecutivi

14. INFORMAZIONI SUI REGISTRI MODBUS

Nel seguente capitolo vengono usate le seguenti abbreviazioni:

MS	Most Significant
LS	Least Significant
MSBIT	Most Significant Bit
LSBIT	Least Significant Bit
MMSW	"Most" Most Significant Word (16bit)
MSW	Most Significant Word (16bit)
LSW	Least Significant Word (16bit)
LLSW	"Least" Least Significant Word (16bit)
RO	Read Only
RW*	Read-Write: REGISTRI CONTENUTI IN MEMORIA FLASH: SCRIVIBILI AL MASSIMO
IXVV	CIRCA 10000 VOLTE
RW**	Read-Write: REGISTRI SCRIVIBILI SOLO DOPO LA SCRITTURA DEL COMANDO
IXVV	"ENABLE WRITE CUSTOM ENERGIES=49616"
UNSIGNED 16 BIT	Registro intero senza segno che può assumere valori da 0 a 65535
SIGNED 16 BIT	Registro intero con segno che può assumere valori da -32768 a +32767
UNSIGNED 32 BIT	Registro intero senza segno che può assumere valori da 0 a 4294967296
SIGNED 32 BIT	Registro intero con segno che può assumere valori da -2147483648 a 2147483647
UNSIGNED 64 BIT	Registro intero senza segno che può assumere valori da 0 a
ONOIONED 04 BIT	18.446.744.073.709.551.615
SIGNED 64 BIT	Registro intero con segno che può assumere valori da -2^63 a 2^63-1
FLOAT 32 BIT	Registro a virgola mobile a 32 bit, a precisione singola (IEEE 754)
I LOAT 32 DIT	https://en.wikipedia.org/wiki/IEEE_754
BIT	Registro booleano, che può assumere i valori 0 (false) o 1 (true)

14.1. NUMERAZIONE DEGLI INDIRIZZI MODBUS "0 BASED" O "1 BASED"

I registri Holding Register secondo lo standard ModBUS sono indirizzabili da 0 a 65535, esistono 2 diverse convenzioni per la numerazione degli indirizzi: la "0 BASED" e la "1 BASED".

Per maggiore chiarezza Seneca riporta le proprie tabelle dei registri in entrambe le convenzioni.

ATTENZIONE!

LEGGERE ATTENTAMENTE LA DOCUMENTAZIONE DEL DISPOSITIVO MASTER MODBUS AL FINE DI CAPIRE QUALE DELLE DUE CONVENZIONI IL COSTRUTTORE HA DECISO DI UTILIZZARE.

SENECA, PER I SUOI PRODOTTI, UTILIZZA LA CONVENZIONE "1 BASED"

14.2. NUMERAZIONE DEGLI INDIRIZZI MODBUS CON CONVENZIONE "0 BASED"

La numerazione è del tipo:

INDIRIZZO MODBUS HOLDING REGISTER (OFFSET)	SIGNIFICATO
0	PRIMO REGISTRO
1	SECONDO REGISTRO
2	TERZO REGISTRO
3	QUARTO REGISTRO
4	QUINTO REGISTRO

Per cui il primo registro si trova all'indirizzo 0.

Nelle tabelle che seguono questa convenzione è indicata con "OFFSET INDIRIZZO".

14.3. NUMERAZIONE DEGLI INDIRIZZI MODBUS CON CONVENZIONE "1 BASED" (STANDARD)

La numerazione è quella stabilita dal consorzio Modbus ed è del tipo:

INDIRIZZO MODBUS HOLDING REGISTER 4x	SIGNIFICATO
40001	PRIMO REGISTRO
40002	SECONDO REGISTRO
40003	TERZO REGISTRO
40004	QUARTO REGISTRO
40005	QUINTO REGISTRO

Questa convenzione può essere indicata con "INDIRIZZO 4x" poiché viene aggiunto un 40000 all'indirizzo in modo che il primo registro ModBUS sia 40001.

È anche possibile una ulteriore convenzione dove viene omesso il numero 4 davanti all'indirizzo del registro:

INDIRIZZO MODBUS HOLDING SENZA 4x	SIGNIFICATO
1	PRIMO REGISTRO
2	SECONDO REGISTRO
3	TERZO REGISTRO
4	QUARTO REGISTRO
5	QUINTO REGISTRO

14.4. CONVENZIONE DEI BIT ALL'INTERNO DI UN REGISTRO MODBUS HOLDING REGISTER

Un registro ModBUS Holding Register è composto da 16 bit con la seguente convenzione:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Ad esempio, se il valore del registro in decimale è

12300

il valore 12300 in esadecimale vale:

0x300C

l'esadecimale 0x300C in valore binario vale:

11 0000 0000 1100

Quindi, usando la convenzione di cui sopra otteniamo:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |

Manuale Utente

14.5. CONVENZIONE DEI BYTE MSB e LSB ALL'INTERNO DI UN REGISTRO MODBUS HOLDING REGISTER

Un registro ModBUS Holding Register è composto da 16 bit con la seguente convenzione:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Si definisce Byte LSB (Least Significant Byte) gli 8 bit che vanno da Bit 0 a Bit 7 compresi, si definisce Byte MSB (Most Significant Byte) gli 8 bit che vanno da Bit 8 a Bit 15 compresi:

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BYTE MSB										BYTE	ELSB			

14.6. RAPPRESENTAZIONE DI UN VALORE A 32 BIT IN DUE REGISTRI MODBUS HOLDING REGISTER CONSECUTIVI

La rappresentazione di un valore a 32 bit nei registri Holding Register in ModBUS è fatta utilizzando 2 registri consecutivi Holding Register (un registro Holding Register è da 16 bit). Per ottenere il valore a 32 bit è necessario leggere quindi due registri consecutivi:

Ad esempio se il registro 40064 contiene i 16 bit più significativi (MSW) mentre il registro 40065 i 16 bit meno significativi (LSW) il valore a 32 bit si ottiene componendo i 2 registri:

BI	Т	BIT														
1:	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	40064 MOST SIGNIFICANT WORD															

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	40065 LEAST SIGNIFICANT WORD														

$$Value_{32bit} = Register_{LSW} + (Register_{MSW} * 65536)$$

Nei registri di lettura è possibile scambiare il word più significativo con quello meno significativo quindi è possibile ottenere il 40064 come LSW e il 40065 come MSW.

15. GESTIONE DI MSC-D DA REGISTRI MODBUS

Per comandare da registri modbus il calibratore è necessario che il parametro "Remote Control" sia su "ON" e che il webserver sia non connesso e non interagisca con il dispositivo.

15.1. **DESCRIZIONE**

Il prodotto MSC dispone di registri Modbus che permettono di controllare il dispositivo e leggere o generare grandezze elettriche.

Il protocollo supportato da MSC è Modbus TCP-IP server.

Lo scopo di questo capitolo è quello di fornire le informazioni per il controllo completo di MSC in modo da poterlo integrare in software di terze parti.

Per gli sviluppatori .NET sono disponibili varie librerie per il protocollo Modbus.

Un esempio la libreria Open Source Modbus è disponibile a questo indirizzo:

https://github.com/NModbus/NModbus

15.2. USO DI MSC PER EFFETTUARE MISURE

15.2.1. VALORI MIN/MAX/AVG DELLE MISURE

Per azzerare i valori Min/Max/Avg scrittura sul registro CMD il valore 5 Per mettere in pausa i valori Min/Max/Avg scrivere nel registro CMD il valore 10

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40108	107	CMD	16 bit senza segno

15.2.2. DATALOGGER

È possibile comandare lo start/stop del datalogger in questo modo:

COMANDO	VALORE SCRITTURA REGISTRO AUX1	VALORE SCRITTURA REGISTRO CMD
DATALOGGER START	1	3
DATALOGGER STOP	0	3

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40108	107	CMD	16 bit senza segno
40109	108	AUX1	16 bit senza segno

INDIRIZZO	REGISTRO	VARIABILE	TIPO VARIABILE	Unità di Misura
REGISTRO	(OFFSET)			
40195-196	194-195	Dimensioni del file del datalogger in byte	32 bit senza segno	Byte

15.2.3. REGISTRO DI DIAGNOSTICA PER LE MISURE

Il registro della diagnostica delle letture è:

INDIRIZZO	REGISTRO	VARIABILE	TIPO VARIABILE	Unità di Misura
REGISTRO	(OFFSET)			
40103	102	Diagnostica	16 bit senza segno	-

Il bit che indica un errore di misura è il

BIT 16	BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1
			10	12			Ů			•	Ů	•	Ů		_
-	-	ERRORE	-	-	-	-	-	-	-	-	-	-	-	-	-
		MISURA													

Dove se il bit ERRORE MISURA:

vale 1 -> Errore misura

vale 0 -> Misura OK

15.2.4. MISURE DI CORRENTE / TENSIONE

La selezione del tipo di misura avviene tramite la scrittura del registro AUX1 e, successivamente, del registro CMD

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40108	107	CMD	16 bit senza segno
40109	108	AUX1	16 bit senza segno

I valori da scrivere nei registri per i diversi tipi di misura sono:

TIPO DI MISURA	VALORE SCRITTURA REGISTRO AUX1	VALORE SCRITTURA REGISTRO CMD
MISURA PASSIVA	1	1
CORRENTE 020 mA		
MISURA ATTIVA CORRENTE 020 mA	2	1
TENSIONE 027 V	3	1
TENSIONE -1090 mV	4	1

Registri di lettura:

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	VARIABILE	TIPO VARIABILE	Unità di Misura
40137-40138	136-137	Valore di Misura	Floating Point	mA / V / mV
40133-40134	132-133	Valore minimo	Floating Point	mA / V / mV
40135-40136	134-135	Valore massimo	Floating Point	mA / V / mV
40171-40172	170-171	Valore medio	Floating Point	mA / V / mV

15.2.5. MISURE DI TERMOCOPPIA

La selezione del tipo di termocoppia avviene tramite la scrittura del registro AUX1 e, successivamente, del registro CMD

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40108	107	CMD	16 bit senza segno
40109	108	AUX1	16 bit senza segno

I valori da scrivere nei registri per selezionare il tipo di termocoppia sono:

TIPO DI TERMOCOPPIA	VALORE SCRITTURA REGISTRO AUX1	VALORE SCRITTURA REGISTRO CMD
J	5	1
K	6	1
T	7	1
E	8	1
L	9	1
N	10	1
R	11	1
S	12	1
В	13	1

Registri di lettura:

INDIRIZZO	REGISTRO	VARIABILE	TIPO VARIABILE	Unità di Misura
REGISTRO	(OFFSET)			
40137-40138	136-137	Temperatura	Floating Point	°C
40117-40118	116-117	Tensione Giunto	Floating Point	mV
		Freddo		
40127-40128	126-127	Temperatura Giunto	Floating Point	°C
		Freddo		
40133-40134	132-133	Temperatura minima	Floating Point	°C
40135-40136	134-135	Temperatura	Floating Point	°C
		massima		
40171-40172	170-171	Temperatura media	Floating Point	°C

15.2.6. MISURE DI TERMORESISTENZA

La selezione del tipo di termoresistenza avviene tramite la scrittura del registro AUX1 e, successivamente, del registro CMD

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40108	107	CMD	16 bit senza segno
40109	108	AUX1	16 bit senza segno

I valori da scrivere nei registri per selezionare il tipo di termoresistenza sono:

TIPO DI	VALORE SCRITTURA	VALORE SCRITTURA
TERMORESISTENZA	REGISTRO AUX1	REGISTRO CMD
PT100 2 FILI	14	1
PT100 3 FILI	15	1
PT100 4 FILI	16	1
PT500 2 FILI	17	1
PT500 3 FILI	18	1
PT500 4 FILI	19	1
PT1000 2 FILI	20	1
PT1000 4 FILI	22	1
PT1000 4 FILI	22	1
PT1000 4 FILI	22	1
CU50 2 FILI	23	1
CU50 3 FILI	24	1
CU50 4 FILI	25	1
CU100 2 FILI	26	1
CU100 3 FILI	27	1
CU100 4 FILI	28	1
NI100 2 FILI	29	1
NI100 3 FILI	30	1
NI100 4 FILI	31	1
NI120 2 FILI	32	1
NI120 3 FILI	33	1
NI120 4 FILI	34	1

Registri di lettura:

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	VARIABILE	TIPO VARIABILE	Unità di Misura
40137-40138	136-137	Temperatura	Floating Point	°C
40131-40132	130-131	Resistenza	Floating Point	Ohm
40133-40134	132-133	Temperatura minima	Floating Point	°C
40135-40136	134-135	Temperatura	Floating Point	°C
		massima		
40171-40172	170-171	Temperatura media	Floating Point	°C

15.2.7. MISURA DI CELLE DI CARICO

La selezione del tipo di misura cella di carico avviene tramite la scrittura del registro AUX1 e, successivamente, del registro CMD

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40108	107	CMD	16 bit senza segno
40109	108	AUX1	16 bit senza segno

I valori da scrivere nei registri per selezionare il tipo di misura cella di carico sono:

TIPO DI MISURA	VALORE SCRITTURA REGISTRO AUX1	VALORE SCRITTURA REGISTRO CMD
MISURA CELLA DI CARICO	35	1

La misura è espressa in mV/V e la misura è solo lorda (tara + peso netto):

Registri di lettura:

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	VARIABILE	TIPO VARIABILE	Unità di Misura
40137-40138	136-137	Misura	Floating Point	mV/V
		Sbilanciamento della		
		cella		

Se la cella è sbilanciata completamente la misura vale 2 mV/V quindi il peso lordo coincide con il fondo scala della cella.

Il peso lordo può quindi essere calcolato secondo la formula:

Peso Lordo [Kg] = (Fondo Scala Cella [Kg] * Misura Sbilanciamento Cella [mV/V]) / 2

Ad esempio se la cella di carico ha un fondo scala di 100 Kg e la misura di sbilanciamento è 1 mV/V si avrà:

Peso Lordo [Kg] = (100 Kg * 1 mV/V) / 2 = 50 Kg

15.2.8. MISURA DI FREQUENZA

La selezione del tipo di misura frequenza avviene tramite la scrittura del registro AUX1 e, successivamente, del registro CMD

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40108	107	CMD	16 bit senza segno
40109	108	AUX1	16 bit senza segno

I valori da scrivere nei registri per selezionare il tipo di misura cella di carico sono:

TIPO DI MISURA	VALORE SCRITTURA REGISTRO AUX1	VALORE SCRITTURA REGISTRO CMD
MISURA CELLA DI CARICO	36	1

Registri di lettura:

INDIRIZZO	REGISTRO	VARIABILE	TIPO VARIABILE	Unità di Misura
REGISTRO	(OFFSET)			
40165-166	164-165	Frequenza	Floating Point	Hz

15.2.9. MISURA DEL NUMERO DI IMPULSI

La selezione del tipo di misura impulsi avviene tramite la scrittura del registro AUX1 e, successivamente, del registro CMD

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40108	107	CMD	16 bit senza segno
40109	108	AUX1	16 bit senza segno

I valori da scrivere nei registri per selezionare il tipo di misura impulsi sono:

TIPO DI MISURA	VALORE SCRITTURA REGISTRO AUX1	VALORE SCRITTURA REGISTRO CMD
MISURA CELLA DI CARICO	37	1

Registri di lettura:

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	VARIABILE	TIPO VARIABILE	Unità di Misura
40153-154	152-153	Numero impulsi con Fronti Positivi	32 bit senza segno	Nr impulsi
40151-152	150-151	Numero impulsi con Fronti Negativi	32 bit senza segno	Nr impulsi

Per azzerare i valori degli impulsi contati scrivere nel registro CMD il valore 5 Per mettere in pausa il conteggio degli impulsi scrivere nel registro CMD il valore 10

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40108	107	CMD	16 bit senza segno

15.3. UTILIZZO DI MSC PER GENERARE SEGNALI

15.3.1. REGISTRO DI DIAGNOSTICA PER LE GENERAZIONI

Il registro della diagnostica delle generazioni è:

INDIRIZZO	REGISTRO	VARIABILE	TIPO VARIABILE	Unità di Misura
REGISTRO	(OFFSET)			
40103	102	Diagnostica	16 bit senza segno	-

Il bit che indica un errore di misura è il

BIT 16	BIT 15	BIT													
		14	13	12	11	10	9	8	7	6	5	4	3	2	1
ERRORE DI	ERRORE DI	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GENERAZIONE	AUTOLETTURA														

Dove se:

II bit ERRORE DI AUTOLETTURA:

vale 1 -> Errore autolettura della generazione attuale

vale 0 -> Generazione OK

II bit ERRORE DI GENERAZIONE:

vale 1 -> Errore di generazione

vale 0 -> Generazione OK

15.3.2. GENERAZIONE DI CORRENTE E TENSIONE

La selezione del tipo di generazione avviene tramite la scrittura del registro AUX1 e, successivamente, del registro CMD

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40208	207	CMD	16 bit senza segno
40209	208	AUX1	16 bit senza segno

I valori da scrivere nei registri per i diversi tipi di misura sono:

TIPO DI GENERAZIONE	VALORE SCRITTURA REGISTRO AUX1	VALORE SCRITTURA REGISTRO CMD
CORRENTE PASSIVA 020 mA	101	1
CORRENTE ATTIVA 020 mA	102	1
TENSIONE 027 V	103	1
TENSIONE -1090 mV	104	1

Registri di scrittura (il valore scritto viene generato ai morsetti) per le correnti:

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	VARIABILE	TIPO VARIABILE	Unità di Misura
40137-40138	136-137	Valore di Corrente da generare	Floating Point	mA

Registri di scrittura (il valore scritto viene generato ai morsetti) per le tensioni:

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	VARIABILE	TIPO VARIABILE	Unità di Misura
40213-40214	212-2016	Valore di Tensione da generare	Floating Point	V / mV

15.3.3. GENERAZIONE DI SEGNALI TERMOCOPPIA

Configurazione del giunto freddo:

GIUNTO FREDDO	VALORE SCRITTURA REGISTRO AUX1	VALORE SCRITTURA REGISTRO AUX2	VALORE SCRITTURA REGISTRO CMD
INTERNO A MSC	2	1	2
ESTERNO A MSC	1	1	2

Dove:

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40209	208	AUX1	16 bit senza segno
40210	209	AUX2	16 bit senza segno
40208	207	CMD	16 bit senza segno

Nel caso di compensazione di giunto freddo manuale è possibile inserire il valore di compensazioni in mV nel registro:

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	VARIABILE	TIPO VARIABILE	Unità di Misura
40241-40242	240-241	Valore giunto freddo manuale	Floating Point	mV

La selezione del tipo di termocoppia avviene tramite la scrittura del registro AUX1 e, successivamente, del registro CMD

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40208	207	CMD	16 bit senza segno
40209	208	AUX1	16 bit senza segno

I valori da scrivere nei registri per selezionare il tipo di termocoppia sono:

TIPO DI TERMOCOPPIA	VALORE SCRITTURA REGISTRO AUX1	VALORE SCRITTURA REGISTRO CMD
J	105	1
K	106	1
Т	107	1
E	108	1
L	109	1
N	110	1
R	111	1
S	112	1
В	113	1

Registri di Scrittura del valore da generare:

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	VARIABILE	TIPO VARIABILE	Unità di Misura
40221-40222	220-221	Temperatura da generare	Floating Point	°C

15.3.4. GENERAZIONE DI SEGNALI TERMORESISTENZA

La selezione del tipo di termoresistenza avviene tramite la scrittura del registro AUX1 e, successivamente, del registro CMD

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40208	207	CMD	16 bit senza segno
40209	208	AUX1	16 bit senza segno

I valori da scrivere nei registri per selezionare il tipo di termoresistenza sono:

TIPO DI TERMORESISTENZA	VALORE SCRITTURA REGISTRO AUX1	VALORE SCRITTURA REGISTRO CMD
PT100 2 FILI	114	1
PT500 2 FILI	117	1
PT1000 2 FILI	120	1
CU50 2 FILI	123	1
CU100 2 FILI	126	1
NI100 2 FILI	129	1
NI120 2 FILI	132	1

Registri di scrittura del valore da generare:

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	VARIABILE	TIPO VARIABILE	Unità di Misura
40229-40230	228-229	Temperatura	Floating Point	°C

15.3.5. GENERAZIONE CELLA DI CARICO

La selezione del tipo di generazione cella di carico avviene tramite la scrittura del registro AUX1 e, successivamente, del registro CMD

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40208	207	CMD	16 bit senza segno
40209	208	AUX1	16 bit senza segno

TIPO DI VALORE SCRITTURA		VALORE SCRITTURA
GENERAZIONE	REGISTRO AUX1	REGISTRO CMD
CELLA DI CARICO	135	1

Lo sbilanciamento della cella deve essere inserito nel registro:

INDIRIZZO	REGISTRO	VARIABILE	TIPO VARIABILE	Unità di Misura
REGISTRO	(OFFSET)			
40215-40216	214-215	Sbilanciamento cella	Floating Point	mV/V

Per generare un valore in Kg (lordi) si utilizzi la seguente relazione:

Sbilanciamento cella [mV/V] = (Kg lordi da generare * 2) / Fondo Scala Cella [Kg]

Ad esempio si voglia simulare una cella di carico con fondo scala da 100 Kg e si voglia generare 25 Kg lordi si avrà che:

Sbilanciamento cella [mV/V] = (25 Kg * 2) / 100 Kg = 0.5 mV/V

15.3.6. GENERAZIONE DI FREQUENZA

La selezione del tipo di generazione frequenza avviene tramite la scrittura del registro AUX1 e, successivamente, del registro CMD

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40208	207	CMD	16 bit senza segno
40209	208	AUX1	16 bit senza segno

TIPO DI	VALORE SCRITTURA	VALORE SCRITTURA
GENERAZIONE	REGISTRO AUX1	REGISTRO CMD
FREQUENZA	136	1

Il valore di frequenza da generare si ottiene scrivendo quattro registri:

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40255-40256	254-255	TICK1	32 bit senza segno
40257-40258	256-257	TICK2	32 bit senza segno
40263-40264	262-263	% TENSIONE HIGH	Floating Point 32 bit
40265-40266	264-265	% TENSIONE LOW	Floating Point 32 bit

Dove:

TEMP = Math.Round((20000/ Frequenza da generare [Hz]),0)

TICK1 = Math.Floor(TEMP/2)

TICK2 = TEMP-TICK1

% TENSIONE HIGH è il valore in percentuale di tensione di quando il segnale deve essere alto (0.0 = 0%, 1.0 = 100%) riferito a 27V (100%)

% TENSIONE LOW è il valore in percentuale di tensione di quando il segnale deve essere basso (0.0 = 0%, 1.0 = 100%) riferito a 27V (100%)

COMANDO	VALORE SCRITTURA	VALORE SCRITTURA
	REGISTRO AUX1	REGISTRO CMD
START GENERAZIONE	1	9

Esempio:

Si voglia generare una frequenza di 100 Hz con ampiezza 0-5V:

TEMP = Math.Round((20000/100 [Hz]),0) = 200

TICK1 = Math.Floor(200/2) = 100

TICK2 = 200-100=100

% TENSIONE HIGH = 0

% TENSIONE LOW = 0.185

15.3.7. GENERAZIONE NUMERO DI IMPULSI

La selezione del tipo di generazione impulsi avviene tramite la scrittura del registro AUX1 e, successivamente, del registro CMD

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40208	207	CMD	16 bit senza segno
40209	208	AUX1	16 bit senza segno

TIPO DI	VALORE SCRITTURA	VALORE SCRITTURA
GENERAZIONE	REGISTRO AUX1	REGISTRO CMD
FREQUENZA	137	1

Il numero di impulsi da generare si ottiene scrivendo 5 registri:

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40253-40254	252-253	NR IMPULSI (x2)	32 bit senza segno
40255-40256	254-255	TICK1	32 bit senza segno
40257-40258	256-257	TICK2	32 bit senza segno
40263-40264	262-263	% TENSIONE HIGH	Floating Point 32 bit
40265-40266	264-265	% TENSIONE LOW	Floating Point 32 bit

Dove:

NR IMPULSI (X2) = Numero di impulsi da generare moltiplicato per 2

TICK1 = Durata impulso Alto in quanti da 50 ms

TICK2 = Durata impulso Basso in quanti da 50 ms

% TENSIONE HIGH è il valore in percentuale di tensione di quando il segnale deve essere alto (0.0 = 0%, 1.0 = 100%) riferito a 27V (100%)

% TENSIONE LOW è il valore in percentuale di tensione di quando il segnale deve essere basso (0.0 = 0%, 1.0 = 100%) riferito a 27V (100%)

COMANDO	VALORE SCRITTURA REGISTRO AUX1	VALORE SCRITTURA REGISTRO CMD
START GENERAZIONE	2	9
CON PARTENZA BASSA		
START GENERAZIONE	3	9
CON PARTENZA ALTA		
PAUSA / START	4	9

Il numero di impulsi ancora da generare è rappresentato nel registro in lettura:

INDIRIZZO REGISTRO	REGISTRO (OFFSET)	NOME REGISTRO	TIPO REGISTRO
40251-40252	250-251	IMPULSI RIMANENTI / 2	32 bit senza segno

Questo valore va diviso per 2 per ottenere il numero di registri rimanenti.

Esempio:

Si vogliano generare 500 impulsi della durata di 500ms High e 500ms Low di ampiezza 0-10V: NR IMPULSI (x2) = 1000

TICK1 = 10

TICK2 = 10

% TENSIONE HIGH = 0.37

% TENSIONE LOW = 0.0