USER MANUAL

EDGE IIOT GATEWAY SERIES

 $C \in$

SENECA S.r.I.

Via Austria 26 – 35127 – Z.I. - PADOVA (PD) - ITALY Tel. +39.049.8705355 – 8705355 Fax +39 049.8706287

www.seneca.it

Introduction

The content of this documentation refers to products and technologies described in it.

All technical data contained in the document may be changed without notice.

The content of this documentation is subject to periodic review.

To use the product safely and effectively, read the following instructions carefully before use.

The product must be used only for the use for which it was designed and manufactured: any other use is under the full responsibility of the user.

Installation, programming and set-up are allowed only to authorized, physically and intellectually suitable operators.

Set-up must be performed only after correct installation and the user must follow all the operations described in the installation manual carefully.

Seneca is not responsible for failures, breakages and accidents caused by ignorance or failure to apply the stated requirements.

Seneca is not responsible for any unauthorized modifications.

Seneca reserves the right to modify the device, for any commercial or construction requirement, without the obligation to promptly update the reference manuals.

No liability for the contents of this document can be accepted.

Use the concepts, examples and other content at your own risk.

There may be errors and inaccuracies in this document that could damage your system, so proceed with caution, the author(s) will not take responsibility for it.

Technical specifications are subject to change without notice.

CONTACT US	
Technical support	supporto@seneca.it

User Manual

Product information <u>commerciale@seneca.it</u>

This document is the property of SENECA srl. Copies and reproduction are prohibited unless authorised

Document revisions

DATE	REVISION	NOTES	AUTHOR
31/08/2020	0	First revision	MM
23/09/2020	1	Aggiunta la nuova funzione "Serial Trace" Aggiunta la nuova funzione "Reset di fabbrica" Aggiunta la nuova funzione "Copia Log su USB" da display e da webserver Spostato capitolo REGISTRI MODBUS I/O EMBEDDED	
23/09/2020	2	Aggiunto nuovo parametro "Sleep Timeout" in MQTT CONFIGURATION Aligned with firmware 104 revision	MM
26/11/2020	MI00557-3	Eliminated "optional" in the WI-FI characteristics	A. Zambolin
15/04/2021	MI00557-4	Allineato alla revisione fw 108	MM
25/08/2021	MI00557-5	Allineato alla revisione fw 109 Aggiunto prodotto R-PASS Eliminato parametro Bandwidth Limitation nel capitolo 21.11	MM
02/05/2022	MI00557-6	Allineato alla revisione fw 109 Added R-PASS product with 2 Ethernet ports	MM
06/05/2022	MI00557-7	Added R-PASS-S product aligned with fw 210 revision	MM
15/12/2022	MI00557-8	Added info on SNMP, OPC-UA protocol. Added R-COMM support Aligned with fw 223 version Added function block list for -S versions	MM
20/06/2023	MI00557-9	Additions by Seneca Service	AS / MM
28/06/2023	MI00557-10	Added new models Z-PASS1-RT, Z-PASS2-RT, Z-TWS4-RT, Z-PASS2-RT-S. Replaced VPN BOX with VPNBOX2 Aligned with SSD/R-PASS fw 232 revision Aligned with -RT fw 1012 revision	MM
03/07/2023	MI00557-11	Small corrections	AZ
20/07/2023	MI00557-12	Corrections in Chapter 23 (MQTT client)	MM
21/12/2023	MI00557-13	Chapter 'SMS Commands' added	AZ

TABLE OF CONTENTS

1. INTRODUCTION	
1.1. FIRMWARE WITH OPEN SOURCE LPG	10
2. MODELS	10
2.1. MODEL DESCRIPTION	11
2.1.1. SSD	11
2.1.2. R-PASS	12
2.1.3. Z-PASS1-RT / Z-TWS4-RT	12
2.1.4. Z-PASS2-RT	12
2.2. HARDWARE AND SOFTWARE OPTIONS	13
2.2.1. SSD	13
3. THE DISPLAY / REMOTE DISPLAY (ONLY SMART D	SPLAY, R-PASS, Z-PASS1-
RT, Z-PASS2-RT)	
3.1. INFORMATION BAR	15
3.2. MENU	15
3.2.1. SETUP	16
3.2.1.1. NETWORK	16
3.2.1.2. PAGES	16
3.2.1.3. TAGS	18
3.2.1.4. DISPLAY	18
3.2.1.5. USERS	20
3.2.1.6. SERIAL	21
3.2.1.7. SNIFFER	21
3.2.1.7.1. SNIFFER MODE CONFIGURATION STEPS	22
3.2.2. ALARMS	23
3.2.3. BUS	24
3.2.4. MAINTENANCE	25
3.2.5. CHART	26
3.3. TYPE OF WIDGETS	
3.3.1. PAGE CHANGE	
3.4. TYPE OF WIDGET PAGE	
3.5. SYNOPTIC PAGE TYPE	
3.5.1. "ADD WIDGET" TOOL	
3.5.2. DATABASE OF SYMBOLS FOR THE SYNOPTIC PAGES	
3.6. ALARMS	
3.7. REMOTE DISPLAY	
3.8. DOWNLOADING LOG FILES TO USB FLASH DRIVE	
· · · · · · · · · · · · · · · · · · ·	
4. FIRMWARE UPDATE	36
4.1. FW UPDATE FROM USB FLASH DRIVE	36
5. IP ADDRESSES	
5.1. FACTORY IP ADDRESSES	37

5.2.	IP ADDRESS SEARCH	37
	GATEWAY MODBUS ETHERNET TO SERIAL (SSD, R-PASS, Z-PASS1-RT, 2 S2-RT MODELS ONLY)3	
7. (GATEWAY ETHERNET TO TRANSPARENT SERIAL (R-PASS, Z-PASS1-RT,)	7-
	S2-RT MODELS ONLY)	
7.1.	VIRTUAL COM PORT WITH RFC 2217	
7.1. 7.2.	SENECA ETHERNET TO SERIAL CONNECT	
	1. INSTALLING THE SENECA SERIAL TO ETHERNET DRIVER	
	2. COM PORT SELECTION FOR SENECA ETHERNET TO SERIAL TO CONNECT	
	3. SENECA SERIAL TO ETHERNET CONFIGURATION	
7.2.	4. DEBUGGING THE CONNECTION	46
7.2.	5. CHANGING THE PORT NUMBER	46
7.3.	SERIAL TUNNEL POINT ON TCP	50
7.4.	POINT-TO-POINT SERIAL TUNNEL ON UDP	51
7.5.	SERIAL TUNNEL FROM POINT TO MULTIPOINT	51
	DATALOGGER (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)5	55
10.	DATALOGGER (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)5 LOGIC REGULATIONS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODEL	.S
9. [10. ONL	LOGIC REGULATIONS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODEL	.S 57
9. [10. ONL 11.	LOGIC REGULATIONS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODEL Y)	.S 57
9. I 10. ONL 11.	LOGIC REGULATIONS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODEL	.S 57 57
9. I 10. ONL 11.	LOGIC REGULATIONS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODEL Y)	.S 57 57
9. I 10. ONL 11. 12.	LOGIC REGULATIONS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODEL Y)	.S 57 57 59 60
9. [10. ONL 11. 12. 12.1. 12.2.	LOGIC REGULATIONS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODEL Y)	.S 57 57 59 60
9. I 10. ONL 11. 12. 12.1. 12.2.	LOGIC REGULATIONS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODEL Y)	.S 57 57 59 60 60
9. I 10. ONL 11. 12. 12.1. 12.2. 13. 14.	LOGIC REGULATIONS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELY)	.S 57 57 59 60 61
9. I 10. ONL 11. 12. 12.1. 12.2. 13. 14.	LOGIC REGULATIONS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELY)	.S 57 57 59 60 61 61 62

18.	OPC UNIFIED ARCHITECTURE SERVER PROTOCOL (OPC-UA)	63
19.	MQTT CLIENT PROTOCOL	63
19.1.	MQTT CHARACTERISTICS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)	
20.	STRATON PLC (R-PASS-S, Z-TWS4-RT-S, Z-PASS2-RT-S MODELS ONL)	Y)64
20.1.	WRITE, DOWNLOAD AND RUN YOUR FIRST PROGRAM	
20.1.	1. MANUAL INSTALLATION OF LIBRARIES AND TEMPLATES IN STRATON	65
20.2.	ENERGY MANAGEMENT PROTOCOLS	69
20.3.	SNMP V2C PROTOCOL	70
21.	R-COMM OPTION (R-PASS MODEL ONLY)	70
22.	CONFIGURATION VUA WEB SERVER (SSD, R-PASS, Z-PASS1-RT, Z-PAS	SS2-RT
MODI	ELS ONLY)	70
22.1.	SUMMARY	70
22.2.	NETWORK AND SERVICES	70
22.3.	PLC (R-PASS-S, Z-TWS4-RT-S, Z-PASS2-RT-S MODELS ONLY)	71
22.4.	WI-FI CONFIGURATION (R-PASS MODEL ONLY)	
22.5.	SERIAL PORTS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)	72
22.6.	I/O CONFIGURATION	
22.7.	REAL TIME CLOCK SETUP	74
22.8.	GATEWAY CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)	74
22.8.		
22.8.	2. TRANSPARENT GATEWAY	75
22.8.	2.1. VIRTUAL COM	75
22.8.	2.2. POINT-TO-POINT SERIAL TUNNEL ON TCP/UDP (MASTER)	75
22.8.	2.3. POINT-TO-MULTIPOINT SERIAL TUNNEL (MASTER)	
22.8	,	
22.8.	· · · ·	
	VPN CONFIGURATION	
22.9.		
22.9.		
22.9.		
22.9.		_
22.9.		
22.9.		_
22.9.		
22.9.		
22.9.		
	OPC-UA SERVER CONFIGURATION	
	0.1. UA EXPERT CLIENT CONFIGURATION	
	OPC-UA CLIENT CONFIGURATION (SSD, R-PASS-S, Z-PASS2-S-RT, Z-TWS4-RT MODELS ONLY)	
	SNMP CONFIGURATION (R-PASS-S, Z-PASS2-RT-S, Z-TWS4-RT-S MODELS ONLY)	
	USERS CONFIGURATIONS	
	ROUTER CONFIGURATION	
	NAT 1:1 RULES	
	STATIC ROUTES	

User Manual

22.17.	TCP SERVER (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)	94				
22.18.	TAG SETUP (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)					
22.19.	TAG VIEW (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)					
22.20.	DB DEVICE (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)					
22.21.	ALARM CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)	98				
22.22.	ALARM SUMMARY (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)					
22.23.	ALARM HISTORY (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)					
22.24.	USB TRANSFER CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)	100				
22.25.	FTP CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)					
22.26.	EMAIL CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)	102				
22.27.	HTTP CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)	103				
22.28.	MQTT CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)	103				
22.29.	PHONEBOOK (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)					
22.30.	MESSAGE CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)	108				
22.31.	TIMER CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)	108				
22.32.	RULE MANAGEMENT (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)	109				
22.3	2.1. "ALARM STATE" PARAMETERS	114				
22.3	2.2. "ALARM ACTIVE" PARAMETERS	114				
22.3	2.3. "DIGITAL TAG" PARAMETERS	114				
22.3	2.4. "ANALOG TAG" PARAMETERS	115				
22.3	2.5. "TIMER" PARAMETERS	115				
22.3	2.6. "SCHEDULER" PARAMETERS	117				
22.3	2.7. "RULE STATUS" PARAMETERS	117				
22.3	2.8. "BIT MASK" PARAMETERS	117				
22.3	2.9. "DIGITAL TAG" PARAMETERS	118				
22.3	2.10. "ANALOG TAG" PARAMETERS	118				
22.3	2.11. EXAMPLE OF THE IMPLEMENTATION OF A PROGRAM WITH LOGICAL RULES	122				
22.33.	DATALOGGER: GENERAL SETTINGS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)	131				
22.34.	GROUP CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)	132				
22.35.	USB FILE MANAGER (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)	132				
22.36.	DATA LOGGER (R-PASS-S, Z-PASS2-RT-S, Z-TWS4-RT-S ONLY)					
22.37.	ETHERNET INTERFACES	132				
22.38.	MODBUS SERIAL TRACE (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)	132				
22.39.	METER-BUS PROTOCOL (M-BUS) (R-PASS-S, Z-PASS2-RT-S, Z-TWS4-RT-S ONLY)	133				
22.3	9.1. M-BUS SCAN	133				
22.3	9.2. "CREATE CONFIGURATION" BUTTON	135				
22.3						
22.3	9.4. IMPORTING THE CONFIGURATION INTO STRATON	136				
22.3	9.5. DELETING UNUSED MBUS VARIABLES	143				
22.3	9.6. REPLACING AN M-BUS DEVICE	144				
22.3	9.7. ADDING AN M-BUS DEVICE	144				
22.3	9.8. DELETING AN MBUS DEVICE	144				
22.3						
	FIRMWARE VERSION					
	FIRMWARE UPGRADE					
	MANAGEMENT CONF					
	LICENCE MANAGEMENT (SSD ONLY)					
	WEBSERVER WITH "GUEST" ACCOUNT					
	WEBSERVER WITH "USER" ACCOUNT					
	FTP / SFTP ACCESS					

23.	MQTT CLIENT PROTOCOL (R-PASS-S, Z-PASS2-RT-S, Z-TWS4-148	RT-S ONLY)
23.1.	PARAMETERS OF THE MQTT PROTOCOL FROM THE PLC PROGRAM	148
23.1	I.1. MANAGING MULTIPLE MQTT CONNECTIONS	149
23.2.	MQTT CONFIGURATION OF SSL/TLS RETRYS	150
23.3.	STATIC AND DYNAMIC CLIENT CERTIFICATES	
23.4.	CHANGING MQTT PARAMETERS IN RUNTIME VIA FILE	
24.	FACTORY RESET	152
24.1.	FACTORY RESET FOR SSD	_
24.2.	FACTORY RESET FOR R-PASS AND R-PASS-S	
24.3.	FACTORY RESET FOR Z-PASS1-RT, Z-PASS2-RT, Z-TWS4-RT-S, Z-PASS2-RT-S	
25.	MAINTENANCE MODE (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT O	NLY)153
26.	MODBUS EMBEDDED I/O REGISTERS (SSD, R-PASS, Z-PASS1-R	•
RT C	NLY)	154
26.1.	SSD	154
26.2.	R-PASS	155
26.3.	Z-PASS1-RT, Z-PASS2-RT	155
27.	SMS COMMANDS (R-PASS AND Z-PASS2-RT MODELS ONLY)	156
27.1.	PPP ON	158
27.2.	PPP OFF	158
27.3.	PPP IP	159
27.4.	PPP CNF	159
27.5.	VPN ON	160
27.6.	VPN OFF	161
27.7.	VPN CNF	161
27.8.	FWL ON	
27.9.	FWL OFF	162
27.10.	GET DIN	163
27.11.	GET DOUT	163
27.12.	SET DOUT	164
27.13.	SET PULSE	
27.14.	SET USER.PHONE	
27.15.	RESET PHONE	
27.16.	SET USER.EMAIL	
27.17.	RESET EMAIL	
27.18.	STATUS	
27.19.	GET GPS	
27.20.	RESET	
27.21.	GET TAG	
27.22.	SET TAG	
27.23.	OVPN ON	
27.24.	OVPN OFF	
	CLEAN LOGS	

EDGE IIOT GATEWAY SERIES

28. Z-NET4 (R-PASS-S, Z-TWS4-RT-S, Z-PASS2-RT-S ONLY)......173

1. INTRODUCTION

ATTENTION!

This user manual extends the information from the installation manual to the configuration of the device. Use the installation manual for more information.

1 ATTENTION!

In any case, SENECA s.r.l. or its suppliers will not be responsible for the loss of data/revenue or consequential or incidental damages due to negligence or bad/improper management of the device, even if SENECA is well aware of these possible damages.

SENECA, its subsidiaries, affiliates, group companies, suppliers and distributors do not guarantee that the functions fully meet the customer's expectations or that the device, firmware and software should have no errors or operate continuously.

1.1. FIRMWARE WITH OPEN SOURCE LPG

Firmwares can contain Open Source software under GPL contract. According to Section 3b of the GPL, it is possible to have the source code for these parts. The source code with the Open Source software license terms can be obtained upon request from Seneca.

Send your request to supporto@seneca.it with the subject "Open Source".

2. MODELS

The Edge IIOT Gateway series consists of the following models:

MODEL	DIGITAL I/O	ANALOG INPUTS	DISPLAY	PLC STRATON	MODEM 4G	INTEGRATED UPS	SERIAL PORTS	ETHERNET PORTS	CAN PORT	WIFI
SSD	2 DIDO	NO	7" TOUCH	NO	NO	NO	2	2	NO	YES
R-PASS	4DI 4DO	2	NO	NO	OPTIONAL	OPTIONAL	2	2 or 4	YES	OPTIONAL
R-PASS- S	4DI 4DO	2	NO	YES	OPTIONAL	OPTIONAL	2	2 or 4	YES	OPTIONAL
Z-PASS1- RT	6 DIDO	2	NO	NO	NO	NO	3	2	YES	NO
Z-PASS2- RT	6 DIDO	2	NO	NO	YES	NO	3	2	YES	NO
Z-TWS4- RT-S	6 DIDO	2	NO	YES	NO	NO	3	2	YES	NO
Z-PASS2- RT-S	6 DIDO	2	NO	YES	YES	NO	3	2	YES	NO

N.B. Depending on the model, the CAN port may be available but not managed by the firmware revision.

2.1. MODEL DESCRIPTION

2.1.1.**SSD**

Surprise Smart Display is a 7-inch HMI touch-sensitive colour display (capacitive touch panel), with 800 x 480 resolution and LED backlight.

It is also an operator panel designed to control and monitor the device operation, systems or production lines.

Smart Display also offers extended connectivity thanks to the functionalities of Industrial Gateway, Serial Device Server, Bridge and WI-FI, it is also equipped with an ever increasing number of industrial protocols. A novelty introduced in the industrial automation world is the possibility to display variables of the Modbus RTU protocol in a completely passive mode (serial sniffer).

The preloaded software application allows you to view parameters, send commands and configure tags, communication, individual video pages and alarm management.

Includes support for the latest version of LET'S VPN for the maintenance and monitoring of remote devices.

2.1.2.R-PASS

R-PASS is a device designed for the control and monitoring of the operation of devices, systems or production lines, it also offers extensive connectivity thanks to the Industrial Gateway, Serial Device Server, Bridge and WI-FI functions, it is also equipped with a continuously increasing number of industrial protocols especially in the IOT sector.

A novelty introduced in the industrial automation world is the possibility to display variables of the Modbus RTU protocol in a completely passive mode (serial sniffer).

It is also equipped with a virtual display accessible from any device via a web browser.

Includes support for the latest version of LET'S VPN for the maintenance and monitoring of remote devices.

The –S version is also available which includes the PLC Straton IEC 61131.

It is possible to connect the R-COMM option which includes a 4G modem and a UPS (optional).

The model with 2 and 4 Ethernet ports is available, with and without WIFI.

For more information on the Straton PLC refer to the website: https://straton-plc.com/en/

In addition to including the Straton PLC, the –S-E version has licenses for energy management protocols.

2.1.3.**Z-PASS1-RT / Z-TWS4-RT**

Z-PASS1-RT is a device designed for the control and monitoring of the operation of devices, systems or production lines, it also offers extensive connectivity thanks to the Industrial Gateway, Serial Device Server and Bridge functions, it is also equipped with a number of continuously increasing industrial protocols especially in the IOT sector.

A novelty introduced in the industrial automation world is the possibility to display variables of the Modbus RTU protocol in a completely passive mode (serial sniffer).

It is also equipped with a virtual display accessible from any device via a web browser.

Includes support for the latest version of LET'S VPN for the maintenance and monitoring of remote devices.

The Z-TWS4-RT version is also available which includes the PLC Straton IEC 61131.

For more information on the Straton PLC refer to the website: https://straton-plc.com/en/

In addition to including the Straton PLC, the-E version has licenses for energy management protocols.

2.1.4.**Z-PASS2-RT**

Z- PASS2-RT is a device designed for the control and monitoring of the operation of devices, systems or production lines, it also offers extensive connectivity thanks to the Industrial Gateway, Serial Device Server and Bridge functions, it is also equipped with a number of continuously increasing industrial protocols especially in the IOT sector.

A novelty introduced in the industrial automation world is the possibility to display variables of the Modbus RTU protocol in a completely passive mode (serial sniffer).

It is also equipped with a virtual display accessible from any device via a web browser.

Includes support for the latest version of LET'S VPN for the maintenance and monitoring of remote devices.

It integrates a latest generation universal 4G modem.

The –S version is also available which includes the PLC Straton IEC 61131.

For more information on the Straton PLC refer to the website: https://straton-plc.com/en/

In addition to including the Straton PLC, the -E version has licenses for energy management protocols.

2.2. HARDWARE AND SOFTWARE OPTIONS

2.2.1.**SSD**

Smart Display has the following hardware options:

HARDWARE OPTIONS	DESCRIPTION
SMART DISPLAY	SMART DISPLAY
	NR 2 INGRESSO DIGITALE
	NR 2 USCITE DIGITALI
	NR 2 ETHERNET
	WI-FI / ROUTER WI-FI

And the following software options (you can also activate more than one package at the same time).

SOFTWARE OPTIONS	DESCRIPTION			
BASIC" PACKAGE	Graphic Display with widgets			
	Remote display			
	Climbing			
	Datalogger max 2000tag			
	Alarms			
	Gateway			
	Serial Sniffer			
	Modbus TCP Client/Server protocol			
	Modbus RTU master/Slave protocol			
	OPC-UA server protocol			
IOT" PACKAGE	HTTP and MQTT protocol for cloud			
	connection			
LOGIC" PACKAGE	Programmable logics through programming			
	"IF THEN ELSE"			
	Remote Alarming			
SENECA LET'S" VPN	Simplified VPN connection via "Seneca			
PACKAGE	LET's VPN" environment			
	Or			
	Open VPN Standard			

3. THE DISPLAY / REMOTE DISPLAY (ONLY SMART DISPLAY, R-PASS, Z-PASS1-RT, Z-PASS2-RT)

In the Smart Display product the display is integrated into the device, in the R-PASS device the display can be accessed via a web browser connection (e.g. Chrome).

The display consists of 3 sections:

[&]quot;A" Represents the bar with the device information

[&]quot;B" Represents the Smart Display menu

[&]quot;C" Represents the Widget page

3.1. INFORMATION BAR

Represents the information related to the device status, in particular:

Icon "A" provides information about the device (such as firmware revision) and manufacturer Icon "B" provides user account information; in case you are not logged in, the icon is replaced by a padlock. The icon on the left, if pressed, allows to logout, the icon on the right indicates the type of user account (A stands for administrator). In the case of guest accounts the icon is shown as follows:

C" icon shows the status of the serial port COM1

Icon "D" shows the status of the serial port COM2

Icon "E" shows the status of the VPN connection: "Seneca Let's VPN" or "OpenVPN standard".

Icon "F" Provides the strength of the WI-FI signal (if present, depending on the model)

"G" icon shows the status of the datalogger

"H" shows the date/time of the device

3.2. **MENU**

Shows the menu:

HOME leads to the main page

SETUP leads to device configuration of the device

ALARMS leads to the alarms section

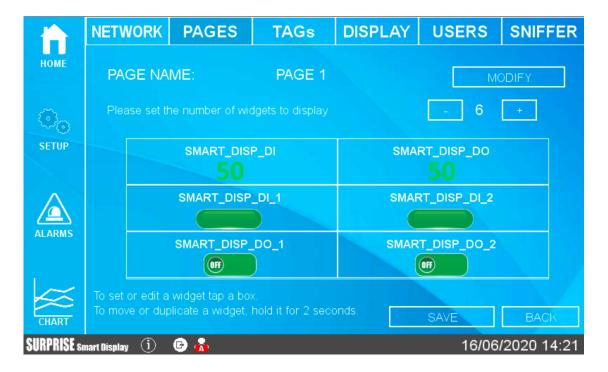
CHART leads to the section related to the graphic analysis of the datalogger data It is also possible to hide the menu pressing the side bar:

3.2.1.**SETUP**

3.2.1.1. **NETWORK**

	NETWORK	PAGES	TAGs	DISPLAY	USERS	SERIAL	
номе	LAN	IP address Mask		192.168.90. ⁻ 255.255.255		Ø	
SETUP	WAN	DHCP IP address Mask	3 1	OFF 192.168.85.° 255.255.252		Ø.	
ALARMS	(i) WIFI	Mode	(OFF		•	
CHART	DG & DNS	Gateway DNS AUTO DNS1 DNS2		192.168.85.1 DFF 192.168.84.1 1.0.0.0		O	
SURPRISE SI	SURPRISE smart Display						

In this section it is possible to configure the settings for the LAN and WAN Ethernet ports and WI- FI network port. The WI- WIFI port section allows to you choose WI-FI Station or Access Point mode.


The Station mode allows the device to connect to an existing Wi-Fi network, instead, the Access Point mode allows the device to create a new Wi-Fi network to which other devices can connect.

3.2.1.2. PAGES

On the first screen it is possible to add as many pages as user desires and once pages are created, he is able to edit configuration of each one.

It is possible to change the page name and the number of widgets to show.

In the central part there is a preview of the page visualization.

Pressing on a widget icon it is possible to modify the widget parameters: type, colour, etc...

In addition to a widget page it is possible to add a Synoptic page. In a synoptic page it is possible to freely position the widgets and upload graphics from a PC or from a graphics library inside the device to create synoptic pages without the aid of external software.

3.2.1.3. TAGS

In this section the configured tags are visualized.

The device tags are located on the right side (A), it is possible browse the list.

The parameters of each tag appear in the central part (B), you can also scroll through the list.

From firmware version 109 it is possible to add, edit and delete tags also from the display.

3.2.1.4. **DISPLAY**

This section allows to configure the screen brightness, language and screen refresh time.

User Manual

In order to safeguard the consumption and the duration of the screen, it is possible to activate the screensaver (the backlighting of the screen is lowered after the set idle time).

If the screensaver mode is enabled it is possible to exit by pressing anywhere on the screen (or making a movement in front of the screen if the proximity sensor is activated).

Slider mode, instead, allows to cycle the widget pages automatically after a preset time.

3.2.1.5. USERS

This section allows to configure the users who can access to the display.

It is possible to disable the login to access the display (free access) or activate an administrator account and/or guest account.

According to the following table

ACCOUNT	CHANGING THE	SETUP MENU	SETUP
TYPE	VALUE OF A	DISPLAY	MODIFICATION
	TAG		
ADMIN	Yes	FULL	Yes
GUEST	Yes	ONLY "NETWORK"	NO
		AND "TAGS"	
NO	No	NO	NO
ACCOUNT			

If the screen saver is switched off and none touch the screen for 2 minutes the system will automatically logout. If the screen saver is activated and none touch the screen for a time equal to the screen saver time, the system will automatically logout.

3.2.1.6. **SERIAL**

Permette di configurare i parametri delle seriali e definire se il protocollo Modbus deve essere Master o slave.

3.2.1.7. SNIFFER

The serial sniffer function allows to insert one or more Smart Displays in an existing RS485 line with Modbus RTU protocol .

For Modbus RTU protocol there is always a single master and a series of slave devices. The master requires registers to read/write to each slave, who answers sending requested data.

In order to insert a device that displays data without changing the existing configuration, it is necessary to insert one or more smart displays in passive mode (sniffer).

At this point Smart Display will receive all the serial packets transmitted between the master and the slaves and it is necessary associate these packets to tags that will be valued.

ATTENTION!

As the SNIFFER mode is purely passive all defined tags will be read-only

3.2.1.7.1. SNIFFER MODE CONFIGURATION STEPS

The sniffer mode is configured through the following steps (the three buttons at the top of the page):

1) BUS COMMUNICATION SCAN

In this learning mode Smart Display will start to scan the flow of information passing through the bus. Typically, a Master interrogates all the devices in a continuous cycle, so when you are sure that the cycle has ended you can stop the scan. Attention: the operation to stop the scan is always manual.BUS COMMUNICATION SCAN

2) TAG CREATION

In this phase SMART DISPLAY has identified the registers that the devices are exchanging, now it is necessary to associate the name of the tag and the type of data it contains. In the case of a system with Seneca products, it will be necessary to introduce the type of Seneca device and the system will automatically associate the correct tags, in the case of third party devices, the information relating to each register identified will be requested.

3.2.2.**ALARMS**

This section shows the active alarms and alarm history.

If the alarm requires manual acknowledgement, it is possible to use the appropriate button:

In the Historical section are represented all the alarms that have occurred so far:

	ALARMS			HISTORICAL ALARMS		
НОМЕ	NAME	TAG	VALUE	LEVEL	STATUS	TIME
	ALR_DO_1	SMART_D ISP_DO_1	1	Alarm	Acknowledge	16/5/2020 17:0:16
P o	ALR_DO_1	SMART_D ISP_DO_1	1	Alarm	Acknowledge	16/5/2020 16:58:51
SETUP	ALR_DO_2	SMART_D ISP_DO_2		Alarm	Alarm	16/5/2020 16:53:27
	ALR_DO_1	SMART_D ISP_DO_1		Alarm	Alarm	16/5/2020 16:53:21
ALARMS						
CHART			CLE	EAN		
SURPRISE smart Display (i)						

ATTENTION!

ALARMS ARE CONFIGURED IN THE APPROPRIATE SECTION OF THE WEBSERVER

3.2.3.BUS

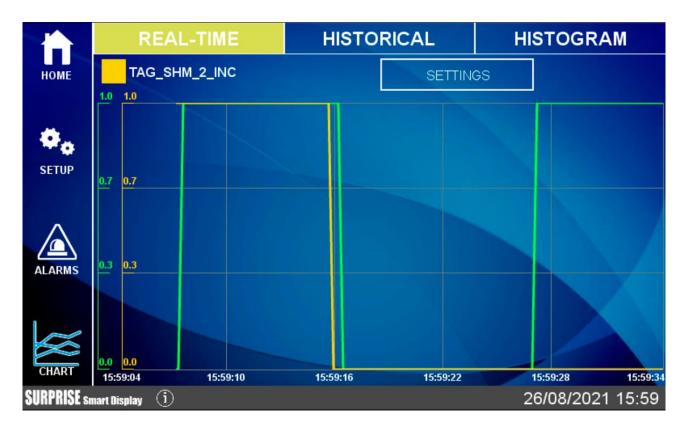
This section allows external devices to be added via serial and/or Ethernet and their tags to be inserted:

The device uses a database that includes records of all Seneca devices.

Adding a device can be done in manual mode (by entering the device among those in the database or from a manufacturer other than Seneca) or by automatically searching for the device on serial or Ethernet. The automatic search also automatically creates tags but only works with Seneca devices.

3.2.4.MAINTENANCE

The Maintenance menu allows maintenance operations to be carried out on the device:



3.2.5. CHART

There are 3 types of graph available: Real Time, Historical and Histogram.

In the Chart Real Time section the tag values are displayed in real time (maximum 10 tags):

The configuration of the real time graph will be recalled also from the relative widget.

In the Historical section, on the other hand, you can load data in the desired range and move back and forth in the graph, using the touch screen.

In case a USB disk is connected, it is possible to export to a file the chart values displayed, by pressing the "EXP" button.

If user is connected via web to the remote display, pressing the "EXP" button the browser will download the file directly to the PC.

The Hystogram chart is essentially the same as the Historical chart but with a histogram representation.

3.3. TYPE OF WIDGETS

Widgets are graphic elements that can be linked to one or more TAGs.

These can be used in both widget pages and synoptic pages.

There are various widgets available, here are some examples:

50	Text widget The TAG value will be displayed as text
99	Gauge widget The TAG value will be displayed with a gauge indicator
	LED widget OFF/ON statuses will be displayed with colors
0101	LED BIT widget OFF/ON bit-mask statuses will be displayed with colors

Grafico macro widget (display virtuale):

This is a virtual display, scroll through the pages of the virtual display by pressing the ">" arrow at the bottom right.

It is possible to place up to 2 virtual displays for each widget page.

3.3.1.PAGE CHANGE

To scroll from a page to the next, simply slide the finger to the left (this operation is called "swipe") as along the pages of a book;

similarly, to return to the previous page, simply slide the finger to the right.

To change the page it is also possible to press a "forward" arrow and a "back" arrow:

3.4. TYPE OF WIDGET PAGE

It represents the widgets page, in this section the widgets linked to the configured tags will appear. You can choose from the various grids available, the widgets will be automatically positioned within the grid.

Each widget graphically represents the value of one or more TAGs.

3.5. SYNOPTIC PAGE TYPE

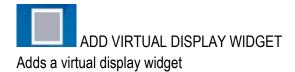
In a synoptic type page it is possible to freely move the widgets by adding graphics and also create animated synoptic ones.

Synoptic type pages can be freely mixed with widget type pages.

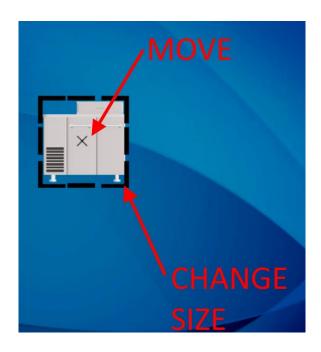
To create a synoptic page Select Pages and press the "Add Synoptic Page" button. At this point a new page will open with tools on the left:

Here is the meaning of the tool icons:

Cancels the last operation performed


Repeats the last operation cancelled by the UNDO

Allows you to choose a graphic file to use as the background of the page



3.5.1. "ADD WIDGET" TOOL

The "ADD WIDGET" button allows the addition of a widget on the page, once the widget has been inserted it is possible to move it by touching the widget in the central cross. To change the size of the widget, move the sides of the rectangle containing the widget:

User Manual

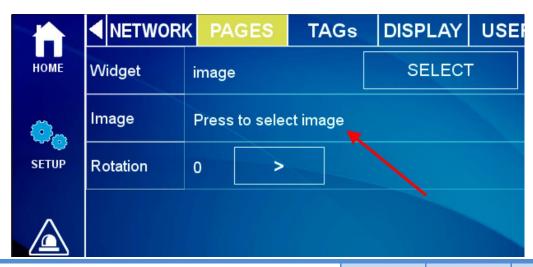
When a widget is selected, a new series of tools appears on the right, the meaning of which is as follows:

A grid is activated, moving the widgets they will follow the set grid.

The widget is aligned

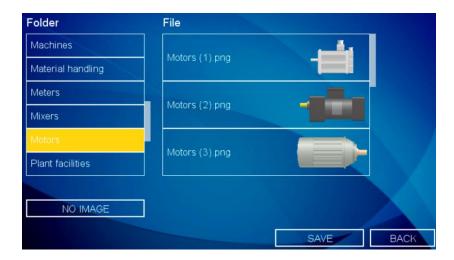
Modification of the configuration parameters of the selected widget is allowed and viewed

The Widget is removed from the page



You return to the initial page of the synoptic

3.5.2.DATABASE OF SYMBOLS FOR THE SYNOPTIC PAGES


Inside the device is a database of graphic symbols that can be used in widgets.

The symbols are divided into categories. To access the symbols, select, for example, the "Image" widget:

For example, selecting the "Motors" category displays the graphic files relating to engines:

3.6. **ALARMS**

When an alarm occurs on at least one TAG, the title of the page is outlined in red and the faulty tags display the alarm icon, see the figure:

3.7. REMOTE DISPLAY

All the operations that can be done on the local display can also be done remotely by connecting to the device web page via a web browser via port 80 (default).

To connect to the remote display, enter the device's IP address into a browser on a PC or smart device:

3.8. DOWNLOADING LOG FILES TO USB FLASH DRIVE

By inserting a USB stick in the HOST port it is possible to carry out a complete download of the files acquired by the datalogger.

To carry out this operation it is necessary to reach the "Maintenance" menu by tapping "SETUP" and then the arrow that extends the menu:

Now select "MAINT." and then press the relevant button to perform the operation:

At this point the system will download all the files acquired by the datalogger.

In the root of the USB stick there will then be many folders (one per day of recording) with the files related to that day (divided in turn into folders representing the active log groups). This functionality is also active via Webserver in the "TAG VIEW" section.

4. FIRMWARE UPDATE

The firmware can be updated from the web page (FW UPDATE section) or with a USB stick formatted with the FAT32 file system.

4.1. FW UPDATE FROM USB FLASH DRIVE

For updating fw from USB port, the procedure is as follows:

Download the FW file from the Seneca website

the downloaded file is a .zip file; extract the .bin file; the FW file must be of the following type:

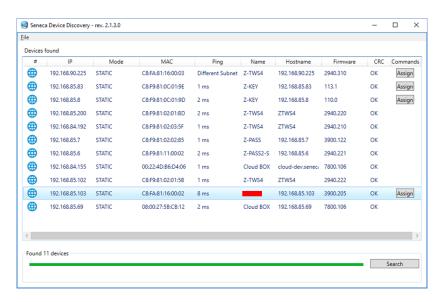
SW00xxxx xxx.bin

- 1) Copy this file to the root of the USB pen
- 2) Turn off the device
- 3) Insert the USB pen into the USB port
- 4) Turn on the device

the update procedure will take a few minutes to complete; during this time, the device MUST NOT be turned off and will be restarted several times automatically.

5. IP ADDRESSES

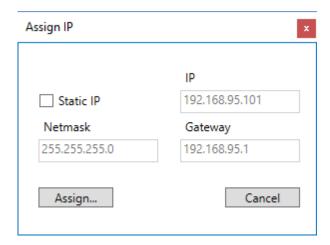
5.1. FACTORY IP ADDRESSES


The devices leave the factory with the following configuration:

ETHERNET LAN PORT static IP: 192.168.90.101

ETHERNET WAN PORT DHCP active WI-FI inactive

5.2. IP ADDRESS SEARCH


The devices leave the factory with the default IP address 192.168.90.101, on Ethernet (LAN). If this address is changed or forgotten, it can be recovered using the "Seneca Device Discovery" software.

This application shows the IP address, MAC address, FW version and some other useful information, for each SENECA device connected to PC.

Moreover, by clicking on the "Assign" button, it is possible modify the device network parameters, as shown in the following figure:

For security reasons, this function can be disabled, in this case, after clicking on the "Assign" button the following error message will be visualized

The SDD software can be easily installed by running the installation program available at the following link: http://www.seneca.it/products/sdd

NOTE:

The IP address shown by the SDD is the IP address of the LAN port when the PC is connected to the LAN port, the WAN IP address when the PC is connected to the WAN port and the WI- FI if it is connected to the latter; moreover, all the changes of device network parameters are applied to the relative port.

6. GATEWAY MODBUS ETHERNET TO SERIAL (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

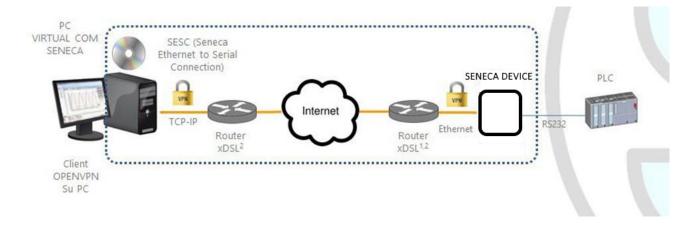
The device can be configured to operate as a Gateway Modbus from Ethernet to Serial.

In this working mode, Modbus TCP Requests received from Ethermet interfaces are converted into Modbus RTU requests and sent to the serial interface; in the same way, Modbus RTU replies received from the serial interface are converted into Modbus TCP replies and sent back to the source network interface.

A Modbus Ethernet to Serial Gateway request can be activated for each of the three available serial ports: each can receive Modbus TCP requests.

Another possible configuration is to perform the Gateway Modbus Ethernet to Serial conversion on multiple serials at the same time.

In this mode Modbus Gateway can support up to 32 simultaneous Modbus TCP connections. These connections can also be established through a VPN tunnel.


7. GATEWAY ETHERNET TO TRANSPARENT SERIAL (R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

As an alternative to Modbus Ethernet to Serial Gateway, the device can be configured to operate as a "Transparent Gateway". The big difference between these two working modes is that while Ethernet to Serial works only with the Modbus protocol, Transparent Gateway can be applied to extend (transport) any serial communication (regardless of RS232/RS85 protocol) through the TCP/IP stack.

- Virtual COM (with RFC 2217 support)
- Point-to-point serial tunnel on TCP
- Point-to-point serial tunnel on UDP
- Point-to-multipoint serial tunnel on UDP

Each mode will be fully described in the following paragraphs.

7.1. VIRTUAL COM PORT WITH RFC 2217

The Virtual COM functionality allows a PC application, which transmits data only on a serial line, to communicate with a remote serial device, using Ethernet/Internet; in other words, through the Seneca device, a PC and a serial device, located in distant sites, can communicate as they are directly connected.

In this mode, data sent over the LAN or WAN are received by the Seneca device and sent to the serial port; the response packets follow the reverse path.

RFC 2217 defines some features that allow to PC to set the properties (baud rate, data bits, stop bits and parity) of the serial port of the Seneca device remotely; so, when Virtual COM operating mode is selected for a port, the port is reconfigured independently from the previous settings and the values configured in the Seneca device are overwritten.

For the Virtual COM to work, a utility called "Seneca Ethernet to Serial Connection" must be installed on the PC. The TCP connection can be established through a VPN tunnel, as shown above.

Once the connection is established, a program using the virtual COM port will transmit the data to the serial port of the device; for example, Modbus RTU requests sent by a Modbus Master program will reach the Modbus slave devices connected to the RS485 bus of COM2.

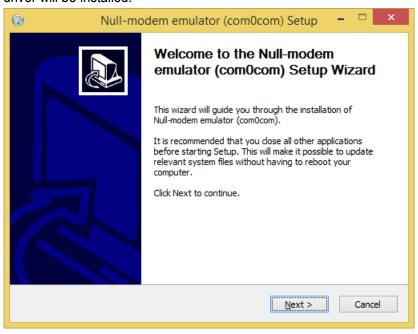
Particular attention must be paid to the "Data Packing Interval" parameter, which can be set when the Virtual COM operating mode is selected: this parameter allows you to define the time interval, in milliseconds, used by the Seneca device as a criterion for packing the bytes of data received from the serial port before sending them to the network; in other words, when the Seneca device does not receive any more bytes from the serial port for the given time interval, it packs the received bytes and sends them over the established TCP connection; the optimal value to set for this parameter depends on the protocol that is transparently routed from the TCP/IP network to the serial line and vice versa.

ATTENTION!

In Virtual COM operating mode only one serial port can be used

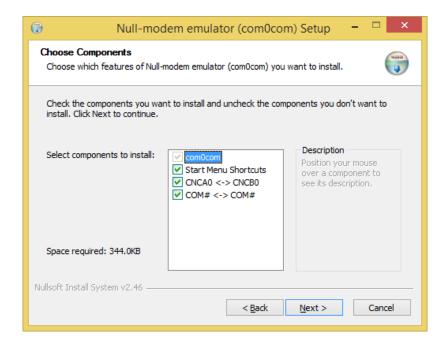
7.2. SENECA ETHERNET TO SERIAL CONNECT

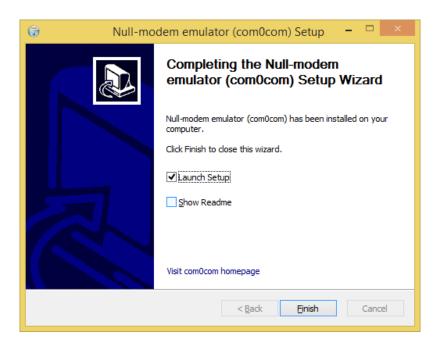
The following guide refers to version 1 of Seneca Ethernet to Serial Connection, subsequent versions are similar.

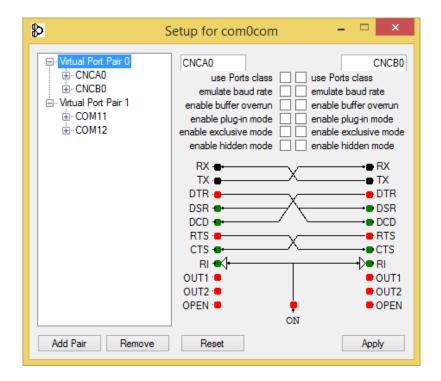


7.2.1 INSTALLING THE SENECA SERIAL TO ETHERNET DRIVER

Seneca Ethernet to Serial Connect is compatible with 32 and 64 bit Windows systems. Double-click on the installer


Then the com0com driver will be installed:

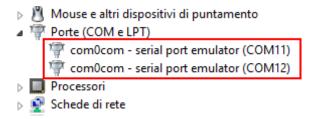

Select the virtual port names CNCA0<->CNCB0 and COM#<->COM#:



Now click on "Start Setup":

Press Finish, the com0com setup will open:

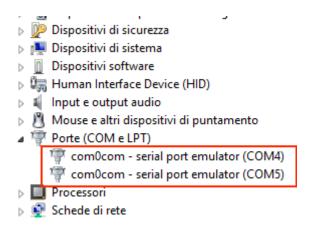
During installation two pairs of virtual COM are created: CNCA0, CNCB0 and also:


COM11, COM12 (note that com# may be different in your system).

The first pair can be used in software that supports CNCA names, the other in software that only supports Port Classes.

If you need to add more virtual ports, press the "Add Pair" button, then select whether or not you need a Class port.

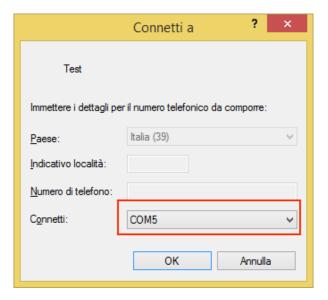
Confirm the driver installation with "Apply".

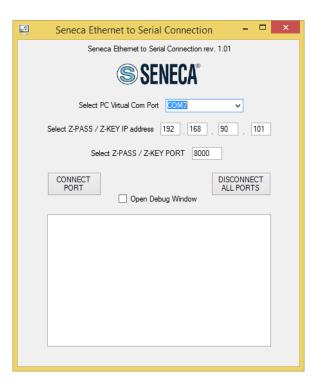

The pair of serial port emulators COM11-COM12 will be available in Device Manger


7.2.2.COM PORT SELECTION FOR SENECA ETHERNET TO SERIAL TO CONNECT

The driver installation will use the first 2 serial ports that are free (in our case the driver has created the pair COM4 and COM5):

The SESC interface visualize only com0com ports and it will only use one port


Select COM5 in the Seneca ES connector:



Now use the same COM port on application to use (e.g. in the terminal software)

COM5 is now connected to the Seneca device by a TCP connection to port 8000.

7.2.3. SENECA SERIAL TO ETHERNET CONFIGURATION

- Select the virtual COM port
- Select the IP address of the Seneca device
- Select TCP-IP port

Click on "CONNECT PORT".

If it is necessary to connect another serial com to another Seneca device, configure the new com port and the new IP address, then press the "CONNECT PORT" button.

To disconnect all ports, click on "DISCONNECT ALL PORTS".

7.2.4.DEBUGGING THE CONNECTION

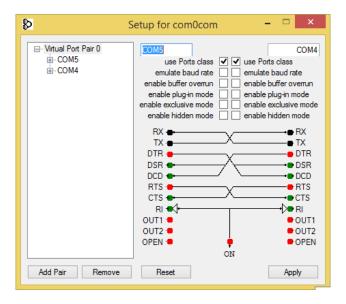
Before clicking on "CONNECT PORT", you can choose to open a debug window to check the connection

Then click on "CONNECT PORT".

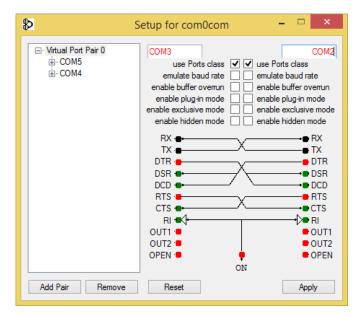
If you see "Connect Error" as in the following image:

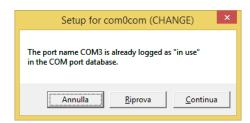
check the configuration (IP address and TCP port).

7.2.5. CHANGING THE PORT NUMBER


Older software applications can only use a small range of COM ports, so you may need to change the virtual COM port number.

In our case the COM pair created is COM4/COM5, let's see the procedure to change it to COM2/COM3 Click on the "DEVICE MANAGER" button:

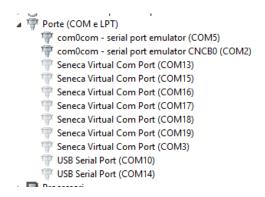

The com0com configuration window appears:

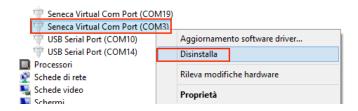


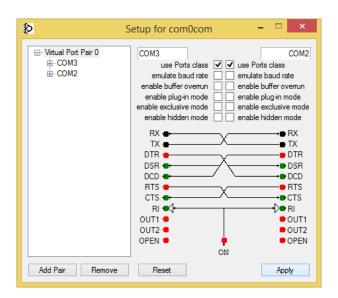
Now change COM5 to COM3 and COM4 to COM2, then click on "Apply":

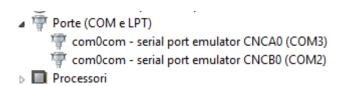
Sometimes the COM may be marked "in use":

If you need to use this COM number, click "Continue", then go to device configuration.


Since the port is not connected, click on "Show hidden devices":

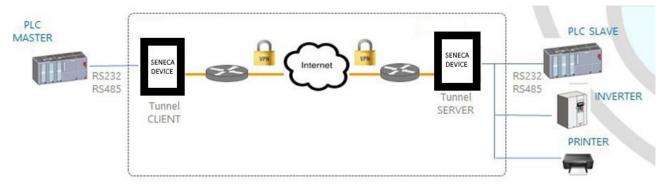



Now all unused ports are displayed in transparency (even our COM3):


Now select the COM3 port and click on "Uninstall":

Now COM3 is free, and we can use it on the com0com setup:

Finally click on "Apply", now the pair COM3/COM2 is created:



ATTENTION!

The Seneca Ethernet to Serial Connect Software always uses the correct port of the pair created in the com0com configuration (in our case COM2).

7.3. SERIAL TUNNEL POINT ON TCP

The point-to-point serial tunnel allows to extend a serial connection between two serial devices (that support the same protocol) via a TCP/UDP connection.

In TCP operating mode, one of the two Seneca devices is defined as "Master" and the other is the "Slave": the first is a Tunnel Client, which receives data from the serial line and sends them to an outgoing TCP connection, while the second is a Tunnel Server, which receives data from an incoming TCP connection and sends them to the serial line; in this mode a "tunnel" is established between the two serial ports.

During configuration, on the Master, you must set the destination IP address and the destination Port that defines the outgoing TCP connection; on the Slave, you must set the Listening Port on which the incoming TCP connection is accepted.

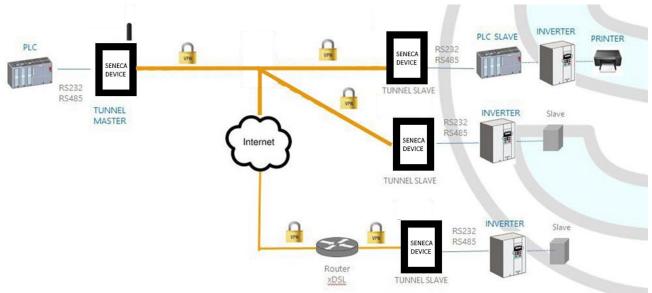
The tunnel can also be established through a VPN connection..

ATTENTION!

In Serial Tunnel Point-to-Point the operating mode on TCP, only one connection is accepted for a given serial port.

7.4. POINT-TO-POINT SERIAL TUNNEL ON UDP

The Serial Tunnel Point-to-Point operating mode on UDP is very similar to that of TCP.


The only difference is that none TCP connection is established and the serial data is carried by a UDP packet. The configuration parameters are the same as for the serial tunnel over TCP.

Again, The UDP packet can also passes through a VPN connection

CAUTION

In Serial Tunnel Point-to-Point operating mode on UDP, only one connection is accepted for a given serial port.

7.5. SERIAL TUNNEL FROM POINT TO MULTIPOINT

The Serial Tunnel Point-to-Multipoint allows you to create a tunnel with a master and more than one slave; on the master side, the data received from the serial line are sent to all the slaves, via the *multicast* transmission mode, in UDP packets.

For multicast to work, the master and slaves must be part of the same multicast group, so there is a "Multicast Group" parameter that must be set accordingly; moreover, for the configuration of the master the "Destination Port" and "Multicast Interface" parameters must be defined, the latter must be set to select the network interface which allows packets to be sent; "Listen Port" and "Multicast Interface" are required for slave configuration; the latter must be set to select the network interface that allows you to receive packets.

ATTENTION!

In Serial Tunnel Point-to-Multipoint operating mode, only one connection is accepted for a given serial port.

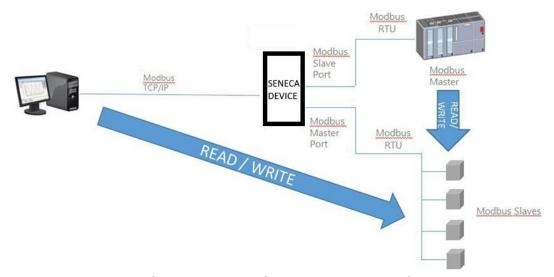
8. MODBUS GATEWAY WITH SHARED MEMORY (R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

The device can be configured to operate as a Modbus Gateway with Shared Memory: in this mode, a series of configured tags are periodically and continuously read by Modbus RTU Slave or Modbus TCP Server devices; these values are always available in a shared memory, readable via Modbus TCP/RTU.

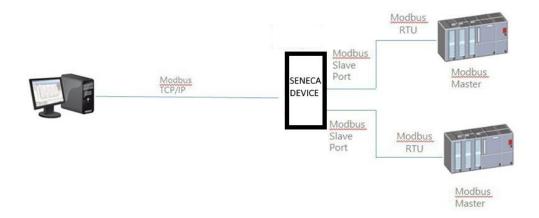

This modality supports up to 2000 tags and up to 32 Modbus TCP Client simultaneously, one Modbus TCP/IP Server (or slave) is always running on a configured TCP port.

For each of the available serial ports you can define the type of "Task": a serial port can be configured as Modbus RTU Master or Modbus RTU Slave or disabled.

In this way different combinations are possible.


In addition, tags can be read to/from up to 25 Modbus TCP Server.

Finally, you can define some tags that are related to the "embedded" digital I/O present in the device.


In the figure above, two serial ports are configured as Modbus RTU Master.

In this case, one serial port is configured as Modbus Slave and another is configured as Modbus Master.

When some registers acquired by the Modbus Slaves must be available for a PLC, which only supports the Modbus Master protocol, the device can be configured with one serial port defined as Modbus Slave (connected to the PLC) and another in Modbus Master (connected to the Modbus Slaves). The PLC Modbus RTU Master and the Modbus TCP client(s) will write/read the shared memory registers of the Seneca device, while the Modbus Gateway keeps the shared memory aligned with the Modbus Slaves registers.

In the figure above, two serial ports are configured as Modbus Slave and connected to a Modbus Master PLC port; in this way, the two PLCs and the Modbus TCP Client can write/read the shared memory to share data.

The Modbus Gateway Shared Memory mode provides some interesting features, as explained below.

In addition to the "classic" behaviour of the gateway, the tags can be configured to operate in "Bridge" mode; this mode allows you to "refresh" the tag values from the serial side only when the gateway receives Modbus TCP/RTU requests for those tags; this can be very useful when using RTU devices with "Fail safe" outputs, where it is necessary to cyclically write the outputs otherwise a fail would occur.

Modbus Gateway Shared Memory also performs request optimization, placing as many registers as possible in a single read/write request; it is possible to set the maximum number of registers in a request independently for

User Manual

each serial port/TCP Server and for read and write operations; this option can be useful for connecting RTU devices that support a maximum number of different registers on different serial ports.

Tag configuration can be created using a Microsoft Excel™ Template provided by Seneca (see paragraph 24.3.2.4); this template can considerably reduce configuration time, particularly when a large number of tags need to be configured.

9. DATALOGGER (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

When the Modbus Gateway functionality with Shared Memory is enabled in the device you can also activate the "Data Logger" mode:

Tag values are periodically stored in files (called "log files"), which can then be transferred.

Tags can be associated with up to four groups of Data Loggers, which can have different sampling and transfer periods.

The following "transfer" methods are currently supported;

- copied to USB stick
- transferred to an FTP server;
- sent to one or more e-mail addresses, as an attachment.
- Sent to a server via http post
- Sent to an MQTT broker

More than one of the above methods can also be enabled at the same time.

Log files are stored in flash memory, so if one of the transfer methods temporarily fails, it can be successfully transferred later.

For each group of data loggers, the "cache" is filled if at least one of the following cases is reached:

- 1000 log files
- 500000/(number of groups enabled) samples (i.e. number of lines of a single log file)

When the limit is reached, the "rotation" of the log file occurs, i.e. the oldest files are overwritten by the new one.

Log files of the standard "csv" type can then be processed by Excel™ or PC software.

Here is a portion of a log file:

If for a tag the actual value is not available (for example, if the tag corresponds to a log that does not respond to Modbus requests), the value written in the corresponding field of the log file can be set to "ERR! The "ERROR MODE" parameter can also be set to LAST VALUE or to a user-defined FAIL value.

User Manual

Please note that each time a configuration change is made that affects the functionality of the Data Logger (from a page in the "Datalogger" section) the following procedure is performed:

- Data Logger processes are interrupted
- The internal log file cache is cleared

10. LOGIC REGULATIONS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

The device can be configured with a maximum of 2000 logical rules A logical rule is based on the following concept

"IF -> THEN -> ELSE"

It means:

IF THE CONDITION HAS OCCURRED -> THEN PERFORM THESE ACTIONS -> OTHERWISE PERFORM THESE OTHER ACTIONS

In each rule can also be configured:

- Combinations of up to three logical conditions (based on alarm states) in AND/OR logical expression;
- up to three actions can be performed

11. ALARMS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

Regarding the alarms A complete set of parameters are available to define the behaviour of the alarms, as indicated in the "Alarm configuration" page; the entire alarm status can be viewed in the "Alarm Summary" page and the alarm log can be retrieved in the "Alarm Log" page.

Moreover, in the "Tag View" page, the columns "ALARM" and "ANALOG DANGER ALARM" show the current alarm status for each tag.

The actions can be used to send an SMS, EMAIL or HTTP POST, MQTT ...;

12. VPN

The device supports VPN connection using two different servers: Seneca VPN BOX2 and a standard OpenVPN Server.

The main advantages of using a VPN are:

- secure connections so the transmitted data are encrypted;
- the ability to establish connections without interfering with the corporate LAN;
- no need to have a static/public IP address
- on the WAN side; remote configurability via Web Server

Two "VPN modes" are available, respectively named "OpenVPN" and "VPN BOX".

The "OpenVPN" mode can be used when the device is to be installed in an existing VPN. In this case, an OpenVPN server must be available and configuration, certificates and key files for the Seneca Client must be provided by the VPN administrator.

Files can be uploaded to the device using the dedicated web page.

If the VPN infrastructure is not available, the recommended choice is to adopt the "VPN Box2" solution developed by Seneca.

"VPN Box2" is a hardware device (or virtual machine) that allows the user to easily configure two alternative types of VPN:

"VPN " Single LAN (Always on connection)

VPN "Point-to-Point" (On demand)

In "Single LAN" VPN, all devices and PCs (and associated local sub-networks) configured in VPN are always connected in the same network. In this scenario any VPN Client (PC or Seneca device) can communicate each other but also with the machines/devices connected to any Seneca device LAN, for this reason, all VPN Clients must have different network configuration.

In the "Point-to-Point" VPN, a client PC, at a given moment, can perform a single connection, upon request, to only one device at a time (and to the machines that are connected to the LAN port of the Seneca device). Furthermore, the devices cannot communicate with each other even if they belong to the same VPN. The advantage of this architecture is that the same subnetwork can be used at all sites. The point-to-point mode is the most used in case of remote maintenance of the systems.

There are two types of point-to-point VPN connection:

- Layer 3 VPN
- Layer 2 VPN

In "Layer 3 VPN", only IP packets (Layer 3) are transported through the VPN tunnel.

On the other side, in "Bridging Layer 2 VPN", all Ethernet frames are transported through the VPN tunnel

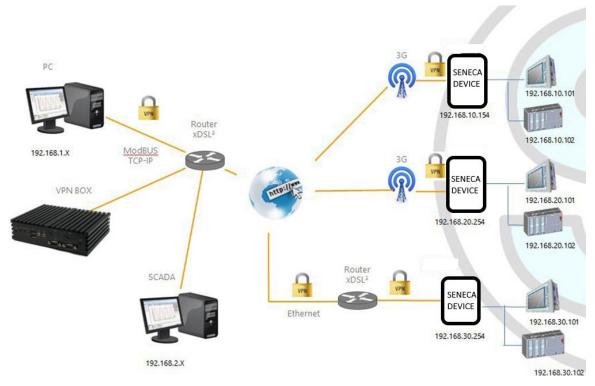
Each mode has advantages and disadvantages:

Layer 2

- can carry any network protocol (e.g. profinet protocol)
- causes more traffic on the VPN tunnel than layer3

Layer 3

- can carry only IP traffic
- layer2 traffic (e.g.: DHCP) is not transported
- reduces traffic management costs, transports only traffic destined for clients


The "VPN Box2" comes with two Windows applications: "VPN Client Communicator" allows the user to connect the PC to the network (in the "Single LAN" case) or to a specific device (in the "Point-to-Point" case)

A detailed description of the "VPN Box2" can be found in the "VPN Box 2 User Manual.

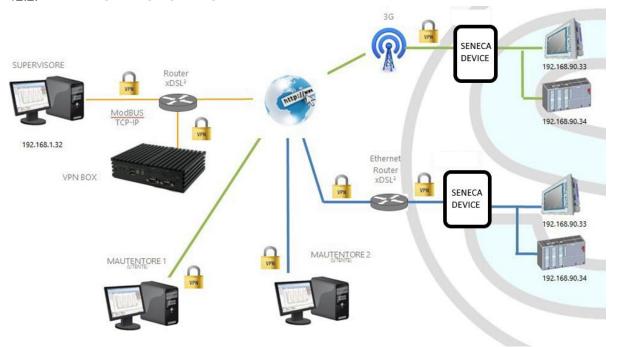
A detailed description of the configuration parameters of a VPN is given in the following two sub-paragraphs.

12.1. VPN "SINGLE LAN" ALWAYS ON

The figure above provides an example of VPN

The client PC (with IP address 192.168.1.X) can connect, as an example, to the first Seneca device using its local IP address.

Also, two devices that are in two different LANs of the same VPN network (e.g.: 192.168.10.101 and 192.168.20.102) can connect to each other, again using their local IP addresses.


In order for this scenario to work properly, one essential rule must always be followed: the LANs of the Seneca device and the LAN of the PC must have different subnets and not in collision; therefore, in the figure above, the following is shown

PC LAN	192.168.1.0/24
SCADA LAN	192.168.2.0/24
SENECA DEVICE LAN	192.168.10.0/2
	4
SENECA DEVICE LAN	192.168.20.0/2
	4
SENECA DEVICE LAN	192.168.30.0/2
	4

If conflicts cannot be avoided, it is still possible to use a "Single LAN" VPN because devices can be reached via their VPN IP addresses and machines beyond them can be reached by configuring "port forwarding" rules.

12.2. VPN "POINT TO POINT" ON DEMAND

The figure above provides an example of "Point-to-Point" VPN.

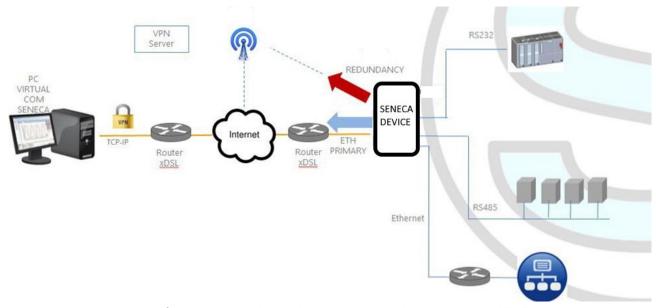
In this scenario a PC (acting as a VPN client) can connect, on demand, to a Seneca device and its subnet using local IP addresses via the VPN Client Communicator application. The software guarantees group management of users to allow only those who belong to a group to access the systems that are part of it

13. ROUTER

As mentioned above, the "Router" mode allows to route packets between the LAN (Ethernet) and the WAN (Mobile Network) / WI- WI interface or mobile connection.

More specifically, an important feature of the Router is the so-called "IP forwarding"; this means that when the device receives a packet not intended for it, it does not discard the packet but forwards it to its actual destination; when a packet is routed from the LAN to the WAN, the device also performs the so-called "IP masquerading", i.e. the replacement of the source IP address with the IP address of the WAN interface.

Another important feature is the availability of a DNS server/forwarder, which can resolve names with or without external DNS.


In addition, a DHCP server is available that assigns IP addresses to clients connected on the LAN port (or on the WI-FI when set in Access Point mode); here, the user can configure the range of addresses used by the server and the time of location.

There is also the possibility to define "Port Forwarding" or "Virtual Server" rules; using these for example, packets received from a TCP or UDP port can be redirected to another port or IP address.

As an alternative to the use of "Port Forwarding" rules, the Router + VPN functions allow the use of local addresses as shown in the previous chapter; there is a flag in the router configuration to enable these features.

14. NETWORK REDUNDANCY

"Network redundancy" is a feature that can be enabled on devices where a mobile or WI-FI modem is available.

This feature is intended to switch the network interface used to access the Internet from Ethernet ("primary" interface) to the secondary interface (Cellular modem or WI-FI), when access to the Internet through the primary interface becomes unavailable, the system draws on the Internet through the configured secondary channel. When the Internet service becomes available again from the primary interface the access returns to the latter.

15. DISABLING THE REMOTE CONNECTION

The products provide an integrated digital input and digital output dedicated to control and monitor the remote connection to the device.

In this way it is possible to block access (via digital input) remotely to a particular machine/plant (e.g. if local maintenance operations are being carried out) and be informed of a remote access in progress (via digital output).

When the "Remote Connection Disable" digital input is set to HIGH, the remote connection to the device is disabled; conversely, when the "Remote Connection Disable" digital input is set to LOW, the remote connection to the device is enabled.

The "Remote Connection Active" digital output is set to the HIGH state when the device is connected.

Four security levels can be configured to disable the remote VPN connection:

Level 1: VPN connections are disabled in any VPN mode but the "VPN Box Service" service is still running, so the device can still be monitored on VPN Box Manager;

Level 2: The "VPN Box Service" is disabled, but the device can still access the Internet and send/receive SMS on a possible cellular interface;

Level 3: any Internet access is disabled, but the device can still send/receive SMS on a possible cellular interface:

Level 4: As level 3 but also the cellular interface is switched off

16. AUTO APN

The Auto-APN function allows the device with a cellular modem to establish mobile data connections without the user having to configure the APN data for the SIM in use.

This is obtained using the IMSI code contained in the SIM and, possibly, some other data available on the SIM. In some special cases, however, when using a "custom APN", the Auto-APN function can be disabled by setting the "APN Mode" parameter to "Manual".

17. HTPP REST CLIENT PROTOCOL (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

Communication between SSD and Cloud is possible via HTTP protocol with a POST call.

The architecture is REST (REpresentational State Transfer), where the data are configured as classic web FORM but through JSON (JavaScript Object Notation). For further information on the HTTP POST communication protocol, refer to "Seneca HTTP POST Communication Protocol" (the document can be requested at supporto@seneca.it).

The device is compatible with the Seneca Cloud Box product and also with a generic server that supports HTTP POST communication protocol.

This protocol is equipped with a set of HTTP POST APIs (RESTFUL); the relative documentation can be provided by Seneca to customers who wish to develop their own server-side software; for information, contact Seneca Service & Support at supporto@seneca.it.

The HTTP POST protocol can be enabled together with the other transfer methods (MEMORY, FTP, EMAIL, ...); however, when the HTTP POST protocol is enabled, the following changes apply to the behaviour of the Data Logger:

- only one recording group can be enabled;
- the sampling period is a multiple of 30 seconds;
- each sample is sent to the http server in a LOG message, carried by an HTTP POST

The Seneca HTTP POST protocol also allows the server to perform the following actions on the device:

- setting the values of one or more tags
- restarting the device
- save the device configuration on the FTP site of the server
- upload the device configuration from the FTP site of the server
- starting the FW update;

There is also an internal cache for LOG messages sent via HTTP POST requests, used to store log messages while unable to send them to the server; this cache can hold up to 3000 messages:

18. OPC UNIFIED ARCHITECTURE SERVER PROTOCOL (OPC-UA)

OPC Unified Architecture (OPC-UA) is a standardized machine-to-machine communication protocol for industry 4.0 developed by the OPC Foundation.

OPC-UA is a vendor-independent communication protocol and is based on the client-server principle. Seneca devices support the OPC-UA server protocol also with security policy.

In particular, the OPC-UA server "exports" the Shared Memory tags, then, using an OPC-UA client it will be possible to read and write directly to all tags.

19. MQTT CLIENT PROTOCOL

MQTT is the most widely used protocol for IOT applications.

"MQTT" stands for MQ Telemetry Transport. It is an extremely simple and lightweight public/subscription messaging protocol designed for devices with low bandwidth, high latency or unreliable networks. The design principles are to minimize network bandwidth and device resource requirements while trying to ensure reliability and a certain degree of delivery guarantee. These principles prove ideal for the emerging machine-to-machine (M2M) or Internet of Things world.

For more information on the MQTT protocol see

The MQTT version supported is 3.1.1

19.1. MQTT CHARACTERISTICS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

The MQTT protocol can be enabled together with the other transfer methods (USB, FTP, EMAIL, ...); however, when the MQTT protocol is enabled, the following changes apply to the behaviour of the Data Logger

The MQTT protocol also allows you to perform the following actions on the device:

- setting the values of one or more tags
- restarting the device
- save the device configuration on the FTP site of the server
- upload the device configuration from the FTP site of the server
- starting the FW update;

There is also an internal cache for LOG messages sent via MQTT requests, used to store log messages while it is not possible to send them to the broker; this cache can hold up to 3000 messages

20. STRATON PLC (R-PASS-S, Z-TWS4-RT-S, Z-PASS2-RT-S MODELS ONLY)

The Straton PLC provides full support for the IEC 61131-3 PLC standard; an integrated development environment (IDE) is available for Windows™ PCs.

The Straton IDE includes several tools such as: a fieldbus configuration tool, an analog signal editor and program editors compliant with the five languages of the IEC 61131-3 standard: Sequential Function Chart (SFC), Function Block Diagram (FBD), Ladder Diagram (LD), Structured Text (ST), Instruction List (IL). With Straton IDE, it's easy to write, download and debug the IEC 61131-3 code.

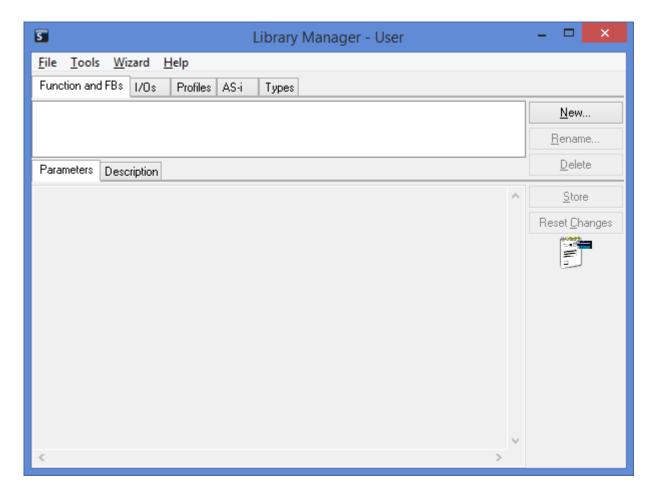
20.1. WRITE, DOWNLOAD AND RUN YOUR FIRST PROGRAM

To allow the PLC developer to easily create Straton applications for Seneca CPUs, the following libraries are available:

- a Function Block (FB) and Functions library, which provides some frequently used functions, in particular related to communication and data transfer activities, compiled in the CPU firmware; the direct use of these FBs and functions is aimed at expert PLC developers (a detailed description of the FBs and functions is given in the relevant chapter of this manual);
- a "Profile" library, which allows access to CPU I/OS via "profile" variables

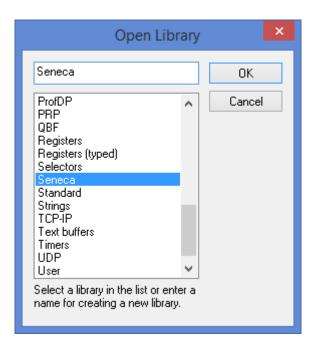
• a "User Defined Function Block" (UDFB) library, in ST language, which simplifies the use of the aforementioned FBs, providing simpler and "higher level" access to their functions.

An installation program called "Seneca Straton Package" is available which automatically installs the Seneca libraries and templates. The installation program also includes Straton IDE and other tools.

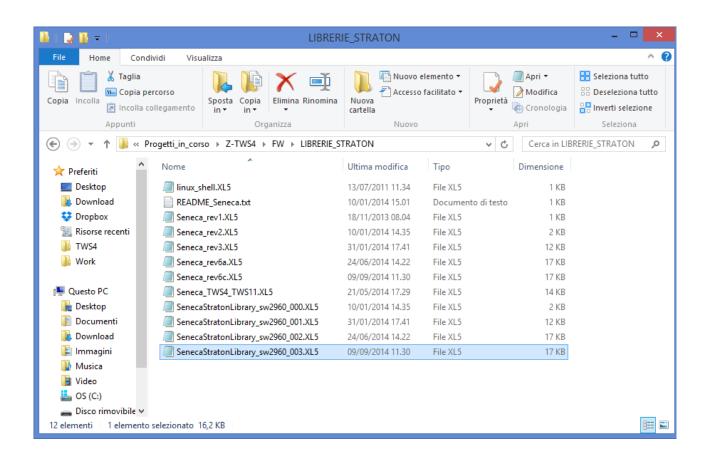

The installation program is available at the following link:

http://www.seneca.it/products/seneca-straton-package

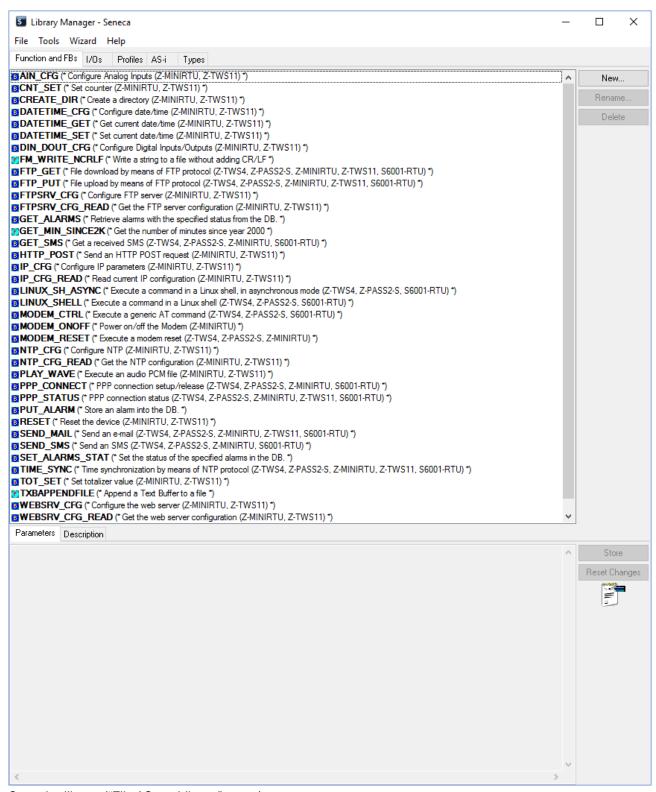
If, for some reason, you are unable to run the installation program, the above libraries and templates can be installed manually as described in the next subparagraph:


20.1.1. MANUAL INSTALLATION OF LIBRARIES AND TEMPLATES IN STRATON

The following steps are required to integrate Seneca libraries and profiles into the Straton IDE. First, we need to add the Seneca FB library (SenecaStratonLibrary.XL5 file) to the IDE, using the "Library Manager" tool:

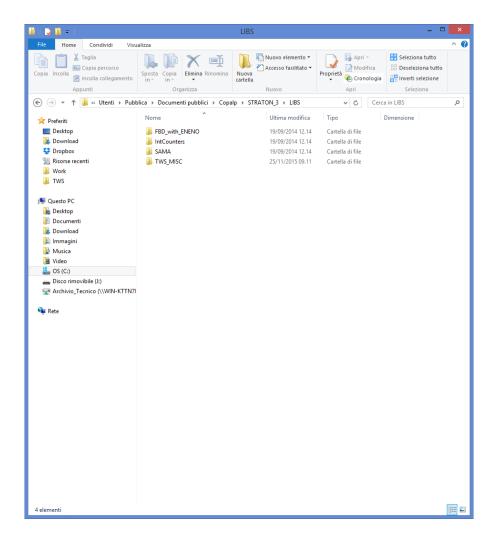


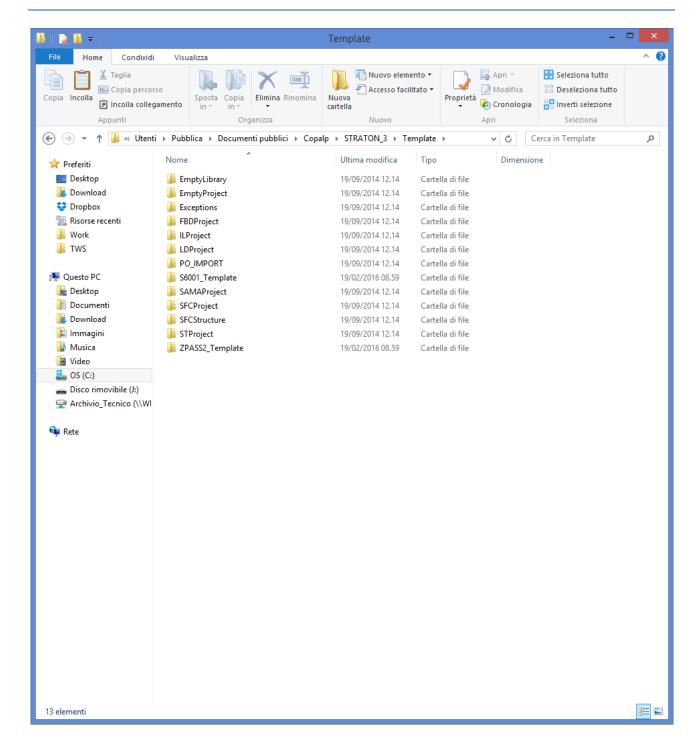
Select the "File / Open Library" option and enter the name "Seneca" to create the new Seneca library.



Then, import the Library ("Tools / Import" menu):

Save the library ("File / Save Library" menu).


The procedure for adding the Profiles library to the IDE is identical to the one just explained; the only difference is that the SenecaStratonProfiles.XL5 file must be selected (instead of the SenecaStratonLibrary.XL5 file).


Now that the "low level" FBs are available, we need to install the UDFB library. The UDFB library is provided as a zip file.

The TWS_MISC folder, contained in the zip file, must be copied to the following directory: C:\Users\Public\Documents\Copalp\STRATON\LIBS:

The template folders must be copied to the following directory: C:\Users\Public\Documents\Copalp\STRATON\Template

20.2. ENERGY MANAGEMENT PROTOCOLS

The Straton PLC supports the following "Energy Management" protocols (optional):

- IEC 60870-5-101 (Master/Slave)
- IEC 60870-5-104 (Master/Slave)
- IEC 61850 (Master/Slave)

The activation of these protocols is based on a license.

Please contact Seneca for more information on licensing Energy Management Protocols.

20.3. SNMP V2C PROTOCOL

Straton PLC supports the V2C version SNMP protocol. For more information, refer to the Straton manual.

21. R-COMM OPTION (R-PASS MODEL ONLY)

For the R-PASS models it is possible to purchase the R-COMM hardware which allows (depending on the model) to add a 4G modem with GNSS positioning and a UPS which allows the R-PASS to operate up to 1 hour without external power supply.

For the installation of R-COMM refer to the R-COMM installation manual, for the available models refer to the Seneca website.

22. CONFIGURATION VUA WEB SERVER (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

The devices can be fully configured via a series of web configuration pages.

To access the configuration site, you need to connect your browser to the IP address on port 8080, e.g.: http://192.168.90.101:8080

and, when required, provide the following credentials (default values):

Username: admin Password: admin

Once authentication is successfully checked, the "Summary" page is visualized, following all the configuration sections will be described.

22.1. SUMMARY

This page shows the main information about the status of the device and the user currently logged in.

22.2. NETWORK AND SERVICES

The following table lists all the configuration parameters available on this page, with a brief explanation and the default value of each parameter.

Field	Meaning
NETWORK	Section dedicated to the network parameters configuration of the Ethernet
	LAN/WAN ports.
WEB SERVER	Section dedicated to web server configuration.
FILE TRANSFER	Section dedicated to FTP protocol configuration

NETWORK	Allows you to enable network redundancy by setting the WAN port as
REDUNDANCY Enable	primary network and the WI-FI port as secondary.
	For SSD there must be a Wi-Fi.
NETWORK	Address that the system uses to check connectivity.
REDUNDANCY Ping	This address must be different from the one set for the "DNS Server"
Address	parameter, otherwise an error will be displayed.
WATCHDOG Enable	Enable or disable the Watchdog in the device
WATCHDOG Timeout	Watchdog timeout, in seconds; when the watchdog is enabled, if it is not
(s)	updated for this interval of seconds, the system will restart.
	Possible values are in the range [303600 s].
R-COMMM Available	Configure whether or not operation with the R-COMM option is active
D COMM LIDO Mada	Configurate the LIDC to an experience
R-COMM UPS Mode	Configures the UPS type of operation.
	Important: Check that the R-COMM model purchased has the "UPS" function before configuring these parameters.
	If the R-COMM purchased does not include the UPS, this parameter must be
	set to "OFF".
	OFF, Shutdown immediately, Shutdown on low power.
	"OFF" does not use R-COMM UPS to power R-PASS
	"Shutdown immediatly" in case of mains power failure closes the log files
	and performs a clean shutdown of R-PASS
	"Shutdown on low power" in case of a mains power failure R-PASS continues
	to work as long as the battery is charged, when it is discharging it closes the
	log files and performs a clean shutdown of R-PASS
DEBUG LOGS Enable	Flag to enable/disable the debug
	logs

22.3. PLC (R-PASS-S, Z-TWS4-RT-S, Z-PASS2-RT-S MODELS ONLY)

On this page it is possible to set the connection parameters with the Straton workbench, activate an optional license (for example for energy management protocols) and set the operation of the COM1 serial port between Rs232/RS485/Z-MBUS.

Z-MBUS is an optional device that allows you to connect the device to a METERBUS

22.4. WI-FI CONFIGURATION (R-PASS MODEL ONLY)

Allows you to configure the WI-FI port parameters.

Below is an extract of the main parameters:

Field	Meaning
Mode	You can select from:
	OFF: The WI-FI port is off
	Station: The WI-FI is connected to an existing network
	Access Point: The device creates a new WI-FI network to which devices can

	connect
OOID	
SSID	If Mode is "Access Point" you can define the name of the new WI-FI network
	that the device will create.
	If Mode is valid "Station" displays the SSID of the network you are
	connected to.
KEY MODE	Represents the encryption protocol to be used.
SCAN/APPLY	Allows, in Station mode, to select the WI-FI to connect to

22.5. SERIAL PORTS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

This page allows you to configure the serial ports (baud rate, stop bits, RS232/RS485 configurations etc...).

22.6. I/O CONFIGURATION

Field	Meaning		
	IO CONFIGURATION		
INPUT/OUTPUT1	Remote connection disable		
MODE	Allows you to use the pin as input. If high blocks remote VPN access		
	General Input		
	Allows you to use the pin as a digital input		
	General Output		
	Allows you to use the pin as Digital Output		
INPUT/OUTPUT2	· · · · · · · · · · · · · · · · · · ·		
MODE	Allows you to use the pin as an output, if active it indicates the presence of remote VPN		
	access.		
	Local Alarm: is an input that is connected to a control PLC, when it is high it indicates a general		
	error that is visible remotely via the Seneca VPN box status interface.		
	Remote Toggle is an output controllable from the Seneca VPN box status interface.		
	General Input		
	Allows you to use the pin as a digital input		
	General Output		
	Allows you to use the pin as Digital Output		
	SECURITY LEVEL		

User Manual

Service Disable	This parameter defines which access services are disabled when the "Remote Connection		
	Disable" digital input is HIGH.		
	The possible values are:		
	Blocking VPN Connection (VPN Service and Internet active)		
	VPN Service blocking (Internet active)		
	Blocking of internet access (both internet and VPN are blocked in the device)		

22.7. REAL TIME CLOCK SETUP

Field	Meaning	
NTP		
Enable	Flag to enable/disable date/time synchronization with a	
	Network Time Protocol server	
Server primary	IP address or FQDN20 of the NTP primary	
	server	
Secondary server	IP address or FQDN20 of the NTP secondary	
	server	
Timezone	Time zone	

22.8. GATEWAY CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

This page allows to configure the type of Ethernet-Serial Gateway you want to use. It is possible to choose between:

Modbus Ethernet to Serial (Real time conversion) Modbus with Memory Transparent

22.8.1. GATEWAY ETHERNET TO SERIAL

Field	Meaning
Enable	Flag to enable / disable Modbus gateway functionality from Ethernet to serial on the port
Port	TCP port to access Modbus from Ethernet to Serial Gateway
	If three distinct values are set, several instances of the Gateway are executed, each of which manages a single serial port.
	If the same port value is set for more than one serial port, the same Gateway instance will
	manage two or more serial ports (depending on the device), i.e. Modbus RTU requests
	will be sent simultaneously to the serial ports.
Response Wait	Timeout when receiving Modbus RTU responses
Time	The value is in milliseconds; possible values are in the range [10 - 10000] ms.
Slave ID for	Slave ID used to access the Modbus registers corresponding to the digital I/Os of the
Embedded I/O	device (if any) this ID can also be used to access the Modbus registers containing GNSS
	positioning information.
	Possible values: [1255] in devices that are equipped with them.
	Only valid for Serial to Ethernet mode.

22.8.2. TRANSPARENT GATEWAY

For each serial port with "Gateway Mode" = "Transparent", the available configuration parameters depend on the value of the "Operating Mode" parameter selected for the port.

The possible values for the "Operating Mode" parameter are:

- None (default value)
- Virtual COM
- Serial Tunnel Point-to-Point on TCP
- Point-to-Point Serial Tunnel on UDP
- Serial Tunnel Point-to-Multipoint

Moreover, for the "Serial Tunnel" operating modes, the available parameters depend on the "Tunnel Role" (Master or Slave).

The following tables describe the relevant parameters for the various operating modes.

22.8.2.1. VIRTUAL COM

Field	Meaning
Listen Port	TCP port to access the transparent gateway
Data Packing	Time interval used as a criterion for packing the data bytes received from the serial port,
Interval	before sending them to the network; that is, if no packet is received for this time, the
	available bytes are sent to the network.
	The value is in milliseconds; possible values are in the range [0 - 1000].

22.8.2.2.POINT-TO-POINT SERIAL TUNNEL ON TCP/UDP (MASTER)

Field	Meaning
Destination	The IP address to which the transparent gateway will connect
address	
Destination port	The TCP / UDP port to which the transparent gateway will connect

22.8.2.3. POINT-TO-MULTIPOINT SERIAL TUNNEL (MASTER)

Field	Meaning	
Destination Port	The UDP port to which the packets will be sent	
Multicast Group	IP address that identifies the Multicast group	
Multicast Interface	Network interface to which UDP packets are sent; possible values: Ethernet VPN; The	
	"VPN" option is only available when VPN is active	

22.8.2.1. POINT-TO-MULTIPOINT SERIAL TUNNEL (SLAVE)

Field	Meaning		
Listen Port	The UDP port from which the packets will be received		
Multicast Group	IP address that identifies the Multicast group		
Multicast	Network interface from which UDP packets are received; possible values: Ethernet		
Interface	VPN; The "VPN" option is only available when VPN is active		

22.8.3. MODBUS GATEWAY WITH SHARED MEMORY (TO BE USED FOR DATALOGGERS AND LOGICS)

Field	Meaning
Enable	This parameter enables/disables the Modbus Shared Memory Gateway service.
	It is important to note that when this parameter is set to OFF, the service is not running
	even if some serial ports are assigned to it.
TCP Port	Listening port for the Modbus TCP server
TCP Connections	Maximum number of TCP connections that can be accepted by the Modbus TCP
Max Number [1-50]	server
Response Mode	This parameter defines how the response to a Modbus request (read) is constructed
when Resource in	for a tag corresponding to an unresponsive Modbus station; when mode is "Tag error
Fail	value", the value in the Modbus response is given according to the "Error Mode" / "Error
	Value" parameters in the tag definition; when the mode is "Exception", the response
	contains an exception with value 11 ("The gateway target device failed to respond").
Diagnostic Area	Select whether diagnostics can be accessed via Holding or Input Modbus Registers.
Туре	
Diagnostic Area	The diagnostic area reserves one bit for each tag (125 registers):
Address	Bit value on 0 -> means Tag reading error (or tag not configured)
	The bit value on 1 -> means Reading tag OK
	Therefore, if you need to check the error status of the first 10 tags using the default area (9001 Holding Registers), you must read the 49001 registry.
	For example if the value of the regsiter is:
	0x3DB = 987 = 0000 0011 1101 1011
	Tag 1 = OK
	Tag 2 = OK
	Tag 3 = FAIL
	Tag 4 = OK
	Tag 5 = OK
	Tag 6 = FAIL
	Note that one register before and one register after the diagnostic area will be reserved
	(by default registers 49000 and 49126).

Therefore, for each serial port with "Gateway Mode" = "Modbus Shared Memory", the parameters described in the following table are available.

User Manual

Field	Meaning
Task	This parameter defines which type of Modbus Shared Memory Gateway
	task is running on the serial port; the possible values are: None, Master,
	Slave
Slave Address	Interval between Modbus RTU requests, in milliseconds (available only
	when Task = Master)
Timeout (ms) [10 – 10000]	Response timeout for Modbus RTU requests, in milliseconds (available
	only when Task = Master)
Delay between Polls (ms)	Interval between Modbus RTU requests, in milliseconds (available only
[10 – 1000]	when Task = Master)
Read/Write Retries [0 – 10]	Maximum number of retries for Modbus RTU requests; this always applies
	to write requests; for read requests, it only applies to tags with "Gateway
	Tag Mode" = "BRIDGE"
Multiple Read Max Number	Maximum number of Modbus registers that can be read in a single Modbus
[1 - 32]	RTU request; it is used to reduce the number of read requests sent on the
	serial bus, thus performing optimization
Multiple Write Max Number Maximum number of Modbus registers that can be written in	
[1 – 32] Modbus RTU request; it is used to reduce the number of	
	sent on the serial bus, thus performing optimization

22.9. VPN CONFIGURATION

The VPN connection can be configured as SENECA VPN BOX or OPEN VPN.

22.9.1. **OPEN VPN**

22.9.1.1. CONFIGURATION FILE

This file must contain all the information needed to configure the Open VPN functioning, the main configuration options are:

- whether the device will function as a client or server (generally, it will be a client)
- the transport protocol (UDP or TCP)
- the IP address of the server / host name and port
- the files needed to perform authentication procedures
- etc...

This file has the extension ovpn (on Windows systems) or the extension .conf (on Linux systems); regardless of its original name, it will be renamed as ovpn.conf on the device.

This is the only mandatory file, i.e. if this file has not been uploaded to the device the VPN cannot be enabled. As mentioned in the Web page, in the options that require a file argument, only the file name, without path, must be provided, as in the following example:

ca ca.crt

OK

ca /home/config/vpn/ca.crt

FAIL

Two other important rules that must be followed are:

- the "dev" option must be: "dev tun0" or "dev tap0".
- the "log" option must be omitted (so that logs are written to syslog)

22.9.1.2.CA CERTIFICATE

This file must contain the certificate of the certification authority (CA) and has the extension .crt. This is required when the configuration file contains the "ca" option.

22.9.1.3. CLIENT CERTIFICATE

This file must contain the client certificate and has the extension .crt. This is required when the configuration file contains the "cert" option.

22.9.1.4. CLIENT KEY

This file must contain the client key and has the extension .key.

This is required when the configuration file contains the "key" option.

22.9.1.5. ADDITIONAL FILE

This file can be of any type and may be required for configuration options other than "ca", "cert" and "key". Note that you can upload more than one additional file.

You can browse your PC to select the files above and send them to the device by pressing the "UPLOAD" button.

When loading is complete, a results page is displayed

You can check which VPN files are stored on your device by clicking the "SHOW VPN STATUS" button,

As the web page recalls, VPN files can be downloaded from the device, if necessary, via FTP / SFTP; they can be found in the /home/config/vpn directory.

You can clear all VPN files by clicking the "RESET" button; a pop-up will appear, asking for confirmation.

When you click the "SHOW VPN STATUS" button, a third section, called "VPN Status", is displayed:

- The "Connection Status" of the VPN (i.e. "Stopped" or "Running")
- the IP address assigned to the VPN interface when "Connected", the "dummy" IP address "0.0.0.0" when "Disconnected".
- the "OpenVPN Status" (i.e.: "Stopped" or "Running")

- the number of packets / bytes received by the VPN interface when connected; "0/0" when disconnected
- the number of packets / bytes sent to the VPN interface when connected; "0/0" when disconnected
- VPN files stored on the device

Important status information is given by the "OpenVPN Status" field; if the VPN is enabled ("ON"), but this status is "Stopped", this means that the Open VPN process cannot be started correctly: probably, the configuration file contains some errors or, perhaps, some options not supported by the OpenVpn implementation of the device. You can update the VPN status by clicking the "REFRESH" button.

Finally, you can hide the "VPN Status" section by clicking the "HIDE VPN STATUS" button.

22.9.1.6. CONFIGURATION FILE FOR USE AS OPENVPN SERVER

This paragraph provides an example of OpenVPN server configuration.

```
port 1194
proto udp
dev tun
ca ca.crt
cert server.crt
key server.key
dh dh1024.pem
server 10.9.7.0 255.255.255.0
ifconfig-pool-persist ipp.txt
client-config-dir ccd
client-to-client
keepalive 10 120
comp-lzo
persist-key
persist-tun
status openvpn-status.log
verb 3
```

22.9.1.7. CONFIGURATION FILE FOR USE AS OPENVPN CLIENT

This paragraph provides an example of OpenVPN server configuration.

```
client
dev tun
port 1194
proto udp
remote 2.192.5.105 1194
nobind
ca ca.crt
cert tws4.crt
key tws4.key
comp-lzo
persist-key
persist-tun
script-security 3 system
```


verb 3

22.9.2. **VPN BOX**

Field	Meaning
VPN BOX/Enable	Flag to enable / disable the "VPN
	Box" feature, i.e. the procedure /
	protocol that allows the device to
	configure the VPN, interacting with
	the "VPN Box" server (see "VPN Box
	User Manual")
VPN BOX/Server	IP or FQDN address of the "VPN Box"
	server
VPN BOX/Password	Password to access the "VPN Box"
	server
VPN BOX/Tag Name	Mnemonic name used to uniquely
	identify the device

When you click the "SHOW VPN STATUS" button, a new section called "VPN Status" is displayed:

- VPN connection status
- the VPN IP address assigned to the device this line is not displayed for the VPN "Point-to-Point (L2)" box, as no IP address is assigned to the VPN interface
- the status of OpenVPN
- the number of packets / bytes received by the VPN interface
- the number of packets / bytes sent to the VPN interface
- the Type of VPN BOX, which can be "Point-to-Point", "Point-to-Point (L2)" or "Single LAN"
- the status of the VPN BOX, if the VPN box is enabled
- the user name of the connected user, if any

The following table gives a brief explanation of the possible "Result" and "Status" strings:

Result	Status	Meaning
Error (Unexpected response)		A response code has been received that is not
		managed by the device (should never occur)
Error (No response from VPN Box)		No response received from VPN Box
		(response timeout)
Error (Invalid response from VPN		A response was received whose content is not
Box)		valid for the device (should never occur)
Error (Wrong password)		The password set on the device is incorrect
Error (License Limit Reached)		The maximum number of devices allowed by
		the license is already registered on VPN Box
Error (VPN Box not configured)		The VPN Box has not yet been configured
Error (Generic error)		A generic error has occurred on VPN Box

User Manual

OK		The device has just been registered on VPN
OI C		Box
OV	N	
OK	New	The device is registered on VPN Box, but not
		yet configured (only "single LAN")
OK	Configuration updated	The device configuration has just been
		updated
OK	Configured	The device is correctly configured and
		available for VPN connection
OK	Ban	The device has been "banned
OK	Not found	The device is not known to VPN Box; this
		happens when the device registration is
		deleted on VPN Box
OK	Unknown	The device has an unknown status in VPN Box
		(should never occur)
OK	Not bound	The "tunnel" between device and VPN Box is
		not active; this may occur when the tunnel port
		is blocked (not open) in the ADSL router on the
		VPN Box side (only "Point-to-Point")
OK	Unexpected status	A status code has been received that is not
		managed by the device (should never occur)

22.10. OPC-UA SERVER CONFIGURATION

In this page, you can set the parameters related to the OPC Unified Architecture (OPC-UA) server, as listed in the following table:

Field	Meaning
Enable	Enable/Disable OPC-UA server
Port	Server port
Username	Username for server access
Password	Password for server access
Security Policy	"None"
	"Basic128Rsa15"
	"Basic256Sha256"
	Note:
	a predefined pair of certificates is
	already included in the product.

You can add your certificates with the appropriate buttons Note that a client must use the following URL to access the OPC-UA server: opc.tcp://IP_ADDR:PORT/

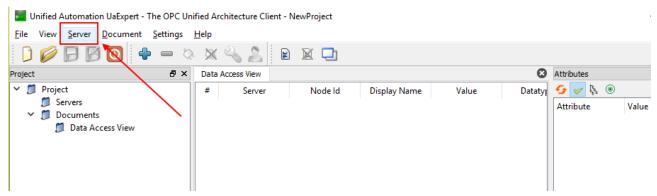
Where

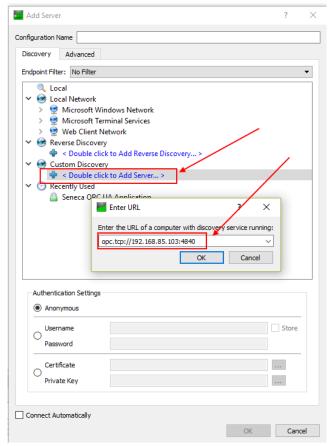
IP ADDR is the IP address of the OPC-UA server (the device itself).

PORT is the TCP port configured for the OPC-UA server

The device's OPC-UA server "exports" the Modbus Shared Memory Gateway tags; therefore, using an OPC-UA client software, it is possible to read / write tags using the OPC-UA protocol.

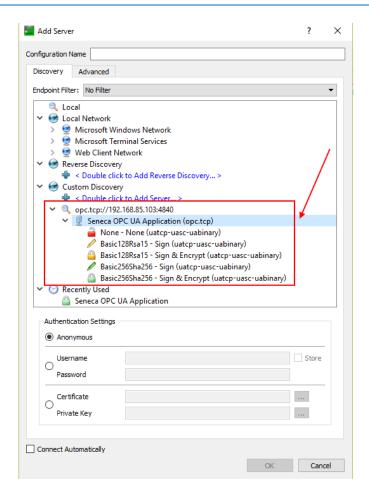
NOTE: for all variables on the OPC-UA server the namespace-id is set to "1".


Page 82

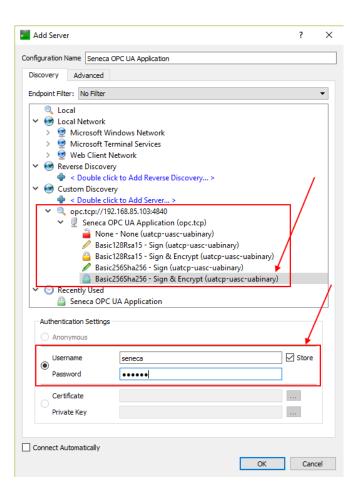

22.10.1.UA EXPERT CLIENT CONFIGURATION

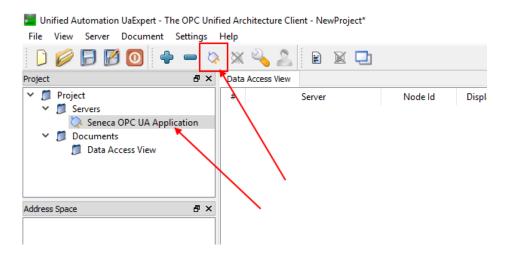
This chapter will help you to configure the connection and the correct security policy with the UA Expert Client software

Click on Select server-> Add


In "Custom Discovery" enter the url for the OPC-UA server:

Press OK.


Supported security policies are now displayed:

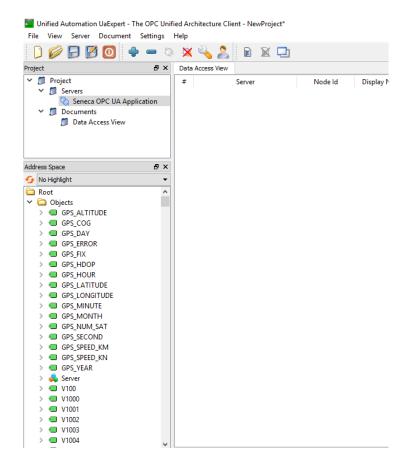


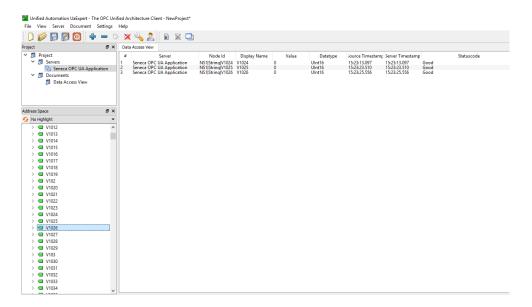
Select the one to use. Then go to Authentication settings and enter the user name and password configured in the OPC-UA server:

Press OK:

Now it is possible to connect to the server using the appropriate icon:

A new server certificate validation dialog will open. After reviewing the certificate, select Trust Server Certificate to permanently add the certificate to UaExpert's trust list. It is also possible to check the appropriate box to temporarily accept the server certificate for this session and choose Continue to not save the certificate to the trusted list or select Cancel to reject the certificate.


The Certificate Error window will now appear:


Click on "Ignore" to continue.

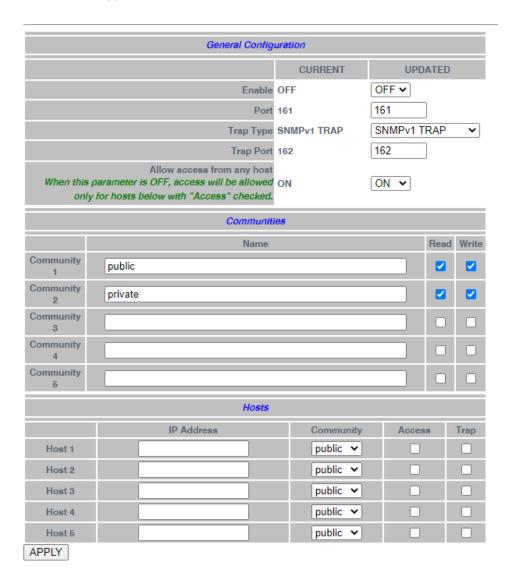
Now the connection is established, you can read/write the value of the tags

To update the tags in real time, drag and drop with the tags you want to display.

22.11. OPC-UA CLIENT CONFIGURATION (SSD, R-PASS-S, Z-PASS2-S-RT, Z-TWS4-RT MODELS ONLY)

In this section you can upload the server connection certificates for the OPC-UA client.

The "Choose File" button selects the certificate. These are only uploaded to the device after pressing the "Upload" button.


The "Show Certificate Files" button allows you to view the uploaded certificate files.

The "Restore Default Certificate Files" button allows you to restore the default certificate files.

22.12. SNMP CONFIGURATION (R-PASS-S, Z-PASS2-RT-S, Z-TWS4-RT-S MODELS ONLY)

This section describes the configuration of the SNMP Agent. The SNMP V2C version is supported.

Field	Meaning	
Enable	Enables or disables the protocol	
Port	Port used by the SNMP protocol	
Trap Type	Selects the type of Trap to use	
Trap Port	rt Port used by Traps	
Allow access from any	Allows any host to access	
host		

Communities: Name	Community identifier
Communities: Read	Provides Read properties to the
	selected Community
Communities: Write	Provides Write properties to the
	selected Community
Hosts: IP Address	Allows you to define the Host IP
Hosts: Community	Allows you to define which community
	the Host is associated with
Hosts: Access	If Flagged, it allows the host to access
	the SNMP Agent
Hosts: Trap	If Flagged, it allows the host to receive
	Traps from the SNMP Agent

22.13. USERS CONFIGURATIONS

This section shows the configuration (user/password) of all the accounts available for access to the Webserver and the Display:

ADMINISTRATOR

It is the account that allows each operation

GUEST

It is the account that allows you to access all the pages except for the "FW Upgrade" and "Configuration Management" pages, displaying all the configuration parameters and status information, without being able to modify any parameter; therefore, in all pages, the "APPLY" buttons (and any other button used to make changes) are disabled.

USER

It is the account that allows access only to the "Summary" and "tag view" pages (and web pages only, it has no access to the display).

FTP USER

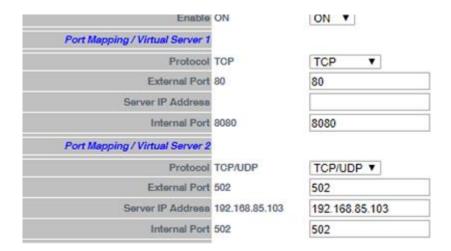
This is the account for accessing the FTP server of the device.

22.14. ROUTER CONFIGURATION

On this page you can change the parameters related to the functionality of the router.

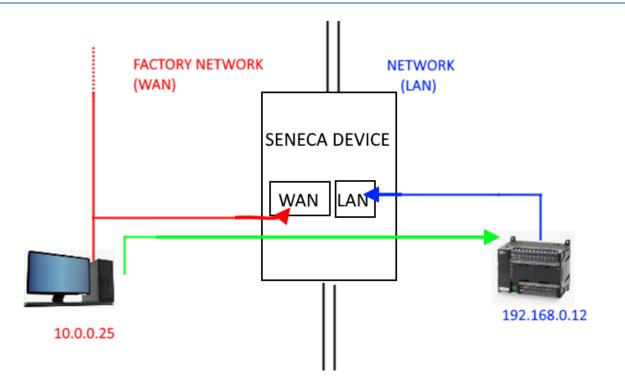
Field	Meaning
Router Enable	Enable/Disable router functionality
DNS Enable	Flag to enable/disable the DNS
	forwarding service

DHCP Server Enable	Flag to enable / disable DHCP service (DHCP server)
DHCP First Address DHCP Last Address	These parameters define the range of IP addresses assigned by the DHCP
	server to requesting clients
DHCP Lease Time (min)	Validity time interval for IP address assignment, in minutes. Possible values are in the range [160].
Use Local Addresses Through VPN/Enable	Flag to enable/disable access to the device and others that are connected to the LAN, using their local IP (LAN) addresses


Finally, there are the port mapping rules (also known as "virtual servers"), the parameters of each are:

Field	Meaning
Protocol	This parameter defines the transport protocol (or port type) affected by the rule: TCP, UDP or both
External Port	TCP or UDP port to which a packet was originally sent
Server IP Address	IP address to which the received packet is forwarded
Internal Port	TCP or UDP port to which the received packet is forwarded

In this example 2 rules have been set:



- the first rule tells the device that any TCP packet received on port 80 (HTTP) must be forwarded to port 8080, leaving the original destination IP address unchanged; therefore, this rule allows access to the configuration website on the standard HTTP port (80);
- The second rule means that any TCP or UDP packets received on port 502 (which is often used for Modbus TCP) must be forwarded to LAN IP address 192.168.85.103 (which corresponds to another device) on the same destination port (502).


22.15. NAT 1:1 RULES

This function allows to access to a device connected to the LAN Port (for example) from the WAN (a PC in the WAN that needs to obtain data from a PLC in the LAN):

It is necessary to create a new address (10.0.0.26) which is located on a PC-compatible network (10.0.0.25).

PLC 192.168.0.12 is now accessible from the WAN using address 10.0.0.26.

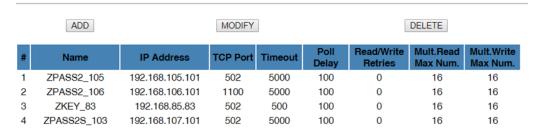
22.16. STATIC ROUTES

Use this function to route an address or range of addresses to different gateways.

For example, if you need to reach 2 different addresses: 192.168.85.23 and 192.168.82.56 but you need to go through 2 different gateways.

For example, you have:

- 1) To access 192.168.85.23 it is necessary to pass through gateway 192.168.80.1
- 2) To access 192.168.82.56 it is necessary to pass through gateway 192.168.80.100 You will have to use the configuration:



And also:

22.17. TCP SERVER (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

This page shows the list of TCP servers used for Modbus Shared Memory Gateway functionality. By clicking on the "ADD" button you can configure a new TCP server, as in the figure below:

The following table explains the meaning of the parameters related to a TCP server.

Field	Meaning
Name	Mnemonic name of the TCP server
	This name is used to identify the TCP
	server on the "Tag Setup" and "Tag
	View" pages.
IP Address	Server IP address
TCP Port	Server TCP port
Timeout (ms) [10-10000]	Connection timeout / response for
	Modbus TCP requests, in
	milliseconds

Delay between Polls (ms) [10-1000]	Interval between two consecutive Modbus TCP requests, in
	milliseconds
Read/Write Retries [0-10]	Maximum number of attempts for
	Modbus TCP requests; this always
	applies to write requests; for read
	requests, only applies to tags with
	"Gateway Tag Mode" = "BRIDGE".
Multiple Read Max Number [1-32]	Maximum number of Modbus
	registers that can be read in a single
	Modbus TCP request; it is used to
	reduce the number of read requests
	sent via the TCP connection, thus
	optimising performance
Multiple Write Max Number [1-32]	Maximum number of Modbus
	registers that can be written in a
	single Modbus TCP request; it is used
	to reduce the number of write
	requests sent via the TCP
	connection, thus optimising
	performance.

The maximum number of TCP-IP Modbus Servers that can be configured is 25.

22.18. TAG SETUP (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

This page is used to configure tags in Modbus Shared Memory Gateway mode.

It is possible to import the inserted tags through an excel template (downloadable from the Seneca website) or export the current one.

It is also possible to insert new tags directly from the web page, all Seneca devices are available through an internal database, you can also define your own database.

The addition of a tag has the following fields (most of them pre-compiled as defined in the database included in the product)

...- --

CURRENT **UPDATED** TAG **GATEWAY TAG NAME** GATEWAY MODBUS Equivalent to the address in the 1 Seneca documentation: 10001 TARGET DEVICE Z-10-D-IN TARGET RESOURCE INPUT 1 TARGET CONNECTED TO COM2 ~ TARGET MODBUS STATION ADDRESS TARGET MODBUS Equivalent to the address in the START REGISTER ADDRESS Seneca documentation : 10001 TARGET MODBUS REQUEST TYPE DISCRETE INPUT TARGET REGISTER DATA TYPE BOOL **GATEWAY TAG MODE** GATEWAY GAIN **OFFSET** 0 **ERROR MODE** LAST VALUE Corresponding to HTTP POST variable : **V26** 26 HTTP POST VID If ON, tag value cannot be OFF 🗸 **READ ONLY** changed by means of Modbus protocol If ON, this tag will be shown in SMART-DISPLAY GUI **EXPORT TO DISPLAY** ON 🕶 This parameter can be changed **ALARM ENABLED** OFF v in "Alarm Configuration" page APPLY

The main parameters:

Field	Meaning
Gateway Tag Name	Tag mnemonic name
Gateway Modbus	Start address of the tag on the Shared Memory Gateway
Start Register Address	
Target Modbus Device	Device from which to read the tag (if it is present in the database) or custom.
Target Resource	Represents the device resource to which the TAG is associated (e.g. Input1,
	Output2 etc) only in the case other than Custom Device not present in the
	database.
Target Connected To	The serial port or Ethernet resource to which the external device is connected.
Gateway Tag Mode	This field defines how the tag will be handled by the gateway processes; possible values are:
	GATEWAY, BRIDGE, SHARED MEMORY or EMBEDDED.
	The difference between Gateway and Bridge is that Bridge tags are updated only when required, in Gateway mode the tags are updated cyclically even if they are not required.

	SHARED MEMORY are tags that can be written by Modbus RTU / Modbus TCP-
	· ·
	IP or by Logical Rules and are TAGs representing local variables. This type of tag
	can also be used for calculated tags.
	EMBEDDED
0 :	for integrated digital I/Os on board the device
Gain	This field corresponds to the value of the coefficient m in the formula
	m * val + q
	applied to the value "val" read by the device
Offset	This field corresponds to the value of the coefficient q in the formula
	m * val + q
	applied to the value "val" read by the device
Initial Value	Start value of the tag
Error Mode	This field defines which value is provided in the answer to a Modbus (read) request,
	when the value from the destination device is not available.
	The possible ways are:
	LAST VALUE: the last available value is given.
	ERROR VALUE: the value specified in the field " ERROR VALUE " is provided.
Error Value	This field defines which value is given in the reply to a Modbus request (reading),
	when the value from the destination device is not available and the " ERROR
	MODE " field is set to " ERROR VALUE".
HTTP POST VID	This field is used to create the "Variable ID" (VID) that identifies the tag in HTTP
	POST requests (useful only when HTTP POST protocol is enabled).
	The VID string is given by the "V" character plus the number contained in the field
Read Only	If selected, the tag can only be written by an external protocol (e.g. Modbus RTU
	or TCP-IP) and not by a logical rule.
Retain	If selected, the tag is saved in a writable retention memory (feRAM), when you
	restart the device the last value is loaded from the memory.
	This option is only available for SHARED MEMORY tags.
Calculated Function	Only active if Tag mode is "Shared Memory". Can be used to calculate the MIN /
	MAX / AVG value of a tag.
	Note that the calculation is only enabled if the datalogger is enabled. The averaging
	calculation time is given by the acquisition time.
Export to Display	If active it allows you to display the tag on the display or virtual display (depending
	on the device)
Alarm Enabled	This field is a read-only flag that indicates whether an alarm has been defined for
	the tag.

22.19. TAG VIEW (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

This page displays the real time values of the configured tags.

The "Data Logger" buttons can be used for:

- start the Data Logger functionality, if it has been stopped (START);
- interrupt the Data Logger functionality, if running (STOP);
- clean the Data Logger's internal cache (this will also stop the Data Logger) (CLEAN CACHE).

The display is automatically updated.

As shown in the following figures, the "ALARM" column shows the status of the alarm defined for the tag, if present; the DANGER ANALOG ALARM" column has a similar behaviour, but is only meaningful for analog tags when the "Alarm Low Low Value" and "Alarm High High Value" thresholds are defined in the alarm configuration.

It is also possible to export the datalogger files to a USB stick by pressing the "COPY TO USB" button.

22.20. DB DEVICE (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

On this page you can manage the database of registers of external devices to connect to.

22.21. ALARM CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

This page displays the list of configured alarms.

By clicking on the "ADD" button, you can configure a new alarm.

The following table explains the meaning of all the parameters available for an alarm.

Field	Meaning
Enabled	Flag to enable / disable an alarm
Type	This parameter indicates whether it is a digital or analog alarm; when changing
	the type, some parameters are enabled or disabled
Name	The name of the alarm; since this parameter is used as a key to identify the
	alarm, it is not possible to configure two alarms with the same name
Tag	The tag to which the alarm is connected.
	The list of tags changes according to the type of alarm (digital or analog).
	You can only associate one alarm to one tag
Activation Delays (s)	This parameter defines the time interval, in seconds, during which the alarm
	condition must be kept true to generate the alarm
Ignore on Boot	This is a flag used to avoid generating the alarm, if the alarm condition is
	detected during system startup
Auto Acknowledge	This is a flag used to avoid the need for an acknowledgement (ACK) by the user
	to allow the alarm to be cleared when it ceases.
Boolean Alarm Value	For a digital alarm, this parameter indicates the value of the tag (LOW or HIGH)
	that corresponds to the alarm condition.

Alarm Low Value	For an analog alarm, this parameter defines the low alarm threshold i.e. if the
	tag value falls below this threshold, the alarm condition is activated
Alarm High Value	For an analog alarm, this parameter defines the high alarm threshold i.e. if the
	tag value exceeds this threshold, the alarm condition is activated
Alarm Low Low Value	For an analog alarm, this parameter defines the low dangerous alarm
	threshold, i.e. if the tag value falls below this threshold, the alarm condition is
	activated
Alarm High High Value	For an analogical alarm, this parameter defines the high dangerous alarm
	threshold, i.e. if the tag value exceeds this threshold, the alarm condition is
	activated.
Deadband Value	This parameter defines a range within which the alarm does not fall
	(hysteresis).

The possible alarm states are explained in the following table:

Status	Level	Meaning		
None	-	The tag has never entered the alarm condition		
Alarm	Alarm	The value of the digital has reached the value defined by the		
		parameter "Boolean Alarm Level".		
Alarm Low	Alarm	The analog tag has fallen below the value defined by the "Alarm Low		
		Value" parameter		
Alarm High	Alarm	The analog tag has exceeded the value defined by the "Alarm High		
		Value" parameter		
Alarm Low Low	Analog	The analog tag has fallen below the value defined by the "Alarm Low		
	Danger	Value" parameter		
	Alarm			
Alarm High High	Analog	The analog tag has exceeded the value defined by the "Alarm High		
Danger		Value" parameter		
	Alarm			
Acknowledge	ledge - The alarm received ACK from the user (or was configur			
		Acknowledge)		
Return	-	The tag has exited the alarm condition, but the alarm has not been		
		acknowledged and the alarm has the "Auto Acknowledge" parameter		
		set to OFF		
End	- The tag has exited the alarm condition and the alarm has bee			
		acknowledged or the alarm has the "Auto Acknowledge" parameter		
		set to ON		

As already mentioned in the previous table, when exiting the alarm condition the alarm states can follow two different paths, depending on the value of the " Auto Acknowledge" parameter:

- Alarm* → Return → <ACK> → End if "Auto Acknowledge"=OFF

Doc: MI-00557-13

Alarm* → End

if "Auto Acknowledge"=ON

22.22. ALARM SUMMARY (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

This page shows the alarms currently active in the system.

The following table explains the meaning of all the information provided for an alarm.

Field	Meaning	
Name	Alarm name	
Tag Name	Tag connected to the alarm	
Level	Hazard" level of the alarm:	
	Alarm" value for digital alarms	
	Alarm" or "Analog Danger Alarm" may apply for analog alarms	
Status On	Alarm status when triggered	
Timestamp On	Date Time of when the alarm was triggered	
Status Action "None" when the alarm goes off		
	It can evolve into:	
	"Acknowledged", If the alarm has been acknowledged	
	"Return", if the alarm has returned but the "Auto Acknowledge" setting is	
	OFF	
Timestamp Action	Date Time of action (previous field)	

22.23. ALARM HISTORY (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

This page shows all alarm status transitions that have occurred in the system, up to a maximum of 1000; alarm status transitions are shown from the most recent to the oldest.

22.24. USB TRANSFER CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

This page contains the parameters that indicate whether log files are copied to a connected USB stick and how long they are stored, as explained in the table below.

Field	Meaning	Default value
Enable	Enable or disable copying of logs to USB	OFF
Max Failure Counter	This parameter defines the maximum number of failed copy	10
	attempts before entering the "Wait after failure" state (see next	
	field)	
Wait After Failure	This parameter defines the duration, in minutes, of the "Wait	15
(minutes)	after failure" status.	
	In this state, no further attempt is made to copy a log file to the	
	USB	
Clean Period (days)	This parameter defines for how many days the log files must	30
	be kept on the USB; that is, after the specified number of days,	
	the log files are deleted.	

In the USB the files are saved in folders according to the following convention:

yyyymmdd (yyyy=year, mm=month, dd=day)

example:

20180612

Each of these folders includes a subfolder:

logX X=[1..4], number of the group

The log file name has the following convention:

Lmmmmmm.csv

where *mmmmmmm* is the number of minutes from [1/1/2000 00:00], corresponds to the date of the first log line example:

L9701690.csv

22.25. FTP CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

This page contains the parameters related to the transfer of log files via FTP, as explained in the following table.

Field	Meaning		
Enable	Enable or not the transfer of logs via FTP		
Max Failure Counter	This parameter defines the maximum number of failed copy attempts		
	before entering the "Wait after failure" state (see next field)		
Wait After Failure	This parameter defines the duration, in minutes, of the "Wait after		
(minutes)	failure" status.		
	In this state, no further attempt is made to copy a log file to the USB		
Crypto Mode	Defines which encryption to use for the FTP connection between:		
	- None		
	- TLS/SSL Implicit		
	- TLS/SSL Explicit		
Host	Hostname (FQDN) or FTP server IP address		
Port	TCP port of the FTP server		
Username	Server Username		
Password	Server password		
Path	Directory path, on the FTP server, where the log files will be saved		

Log files transferred via FTP will have the following format:

<RTU_Name>_X_log<date_time>.csv

Where:

- <RTU_Name> is the value of the "RTU Name" field in the "General Settings" page
- X=[1..4] is the number of the group

- < date_time> has the format yyyymmdd (yyyy=year, mm=month, dd=day); corresponds to the log first line date Example:

SENECA 1 log20180507101507.csv

22.26. EMAIL CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

E-mails can be used to transfer log files or to send alarms; some parameters on this page are used only when transferring log files, not when sending alarms; these parameters are marked with the caption "Data Logger Only".

All the parameters are explained in the following table.

Field	Meaning
Enable	Flag indicating whether log files are transferred via EMAIL or not
	Note that it is possible to send alarms via EMAIL even if this parameter is set to
	OFF.
Max Failure	This parameter defines the maximum number of failures before entering the "Wait
Counter	after failure" state (see next field).
Wait After Failure	This parameter defines the duration, in minutes, of the "Wait after failure" status.
(minutes)	In this state, no further attempt is made to send a log file or alarm via EMAIL
Crypto Mode	This parameter defines the encryption type of the EMAIL connection.
	The possible ways are:
	None
	TLS/SSL
	STARTTLS
Host	Hostname (FQDN) or IP address of the MAIL server
Port	EMAIL server port (TCP)
Username	EMAIL server username
Password	EMAIL server password
From	Sender's email address
То	List of one or more e-mail recipient addresses, separated by commas.
	This parameter is only used for the transfer of log files
Subject	Subject of the email.
	This parameter is only used for the transfer of log files
Text	Email text: If left blank a standard text is added.
	This parameter is only used for the transfer of log files

Log files sent as EMAIL attachments have names with the following format:

<RTU_Name> _X_log <date_time> .csv

where:

- <RTU_Name> is the value of the "RTU Name" parameter in the "General Settings" page
- -X = [1..4] is the number of the group
- <date_time> has the format yyyymmdd (yyyy = year, mm = month, dd = day); this is the timestamp of the first sample (line) in the log file

for example ..:

SENECA_1_log20180507101507.csv

Emails containing alerts have the following text format:

MESSAGE: <timestamp>

<nome rtu> <testo messaggio>

with the following object: <nome rtu>: ALARM

22.27. HTTP CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

The http post protocol can be used to send log samples or alarms (events). All the parameters are explained in the following table.

Field	Meaning
Enable	Enable or not the sending of logs via http
Max Failure Counter	This parameter defines the maximum number of failures before entering the "Wait
	after failure" state (see next field).
Wait After Failure	This parameter defines the duration, in minutes, of the "Wait after failure" status.
(minutes)	In this state, no further attempt is made to send a log file or alarm via http POST.
Crypto Mode	This parameter defines the encryption type of the http connection.
	The possible ways are:
	OFF (HTTP)
	ON (HTTPS)
Host	Hostname (FQDN) or HTTP server IP address
Port	TCP port of the HTTP server
Password	HTTP server password

22.28. MQTT CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

The MQTT protocol can be used to send (and receive) data or events to a cloud (called a broker). All the parameters are explained in the following table:

Field	Meaning	
Enable	Enable or not the MQTT protocol.	
Max Failure Counter	This parameter defines the maximum number of failures before entering the	
	"Wait after failure" state (see next field).	
Wait After Failure	This parameter defines the duration, in minutes, of the "Wait after failure"	
(minutes)	status.	
	In this state, no further attempts are made to send or receive data via MQTT.	
Client ID	Defines the Client ID used in the MQTT protocol	

User Manual

Broker Host [Defines the host name of the MQTT broker		
Broker Port [Defines the MQTT broker port		
Use WebSockets A	Allows you to activate MQTT communication via Websockets		
Keep Alive Interval	This parameter defines Keep alive which ensures that the connection between		
(seconds) t	the broker and client is still open and that the broker and client are aware that they		
a	are connected. When the client establishes a connection to the broker, it tells the		
	proker a time interval in seconds. This interval defines the maximum period of		
	ime during which the broker and client may not communicate with each other.		
Clean Session	This parameter defines the "clean session".		
	When the clean session flag is set to true, the client does not want a persistent		
	session. If the client disconnects for any reason, all information and messages		
	queued from a previous session are lost.		
_	Usually if a publisher publishes a message on a topic to which no one is		
	subscribed, the message is simply discarded by the broker. However, the		
	bublisher can tell the broker to keep the last message of that topic.		
•	This parameter defines the QOS of the MQTT protocol.		
	Can be selected from		
	QOS 0 (once only, without ack)		
	QOS 1 (at least once, with ack)		
	QOS 2 (once only, with ack and resend)		
	This parameter defines whether user/password authentication should be used to access the broker		
	Broker Username		
	Broker password Defines if the crypto is SSL/TLS		
	This parameter defines whether topics should only be sent in case of change		
	(based on minimum time) or not.		
,	This parameter defines whether the publish contains multiple tags or whether the		
· ·	device should send a publish for each tag		
	Select the topic name for the logs using the following table:		
	%c Device Client ID		
	%m Device MAC Address		
	%e Device IMEI		
	%d Date/Time		
	%t timestamp (number of seconds from 01/01/1970)		
	%x text (only for "Publish Payload for Alarms")		
	%b bulk (format specified in "Publish Bulk Format")		
	%n Tag name (only for "Publish Bulk Format")		
	rag hame (only for a union but to office)		

User Manual

%i	Tag validity flag (only in "Publish Bulk Format")
%j[field]	Adds double quotes " to [field]. The double quotes represent a string in JSON
%\$tag_name\$	Value of the "tag_name" tag
%#tag_name#	Validity of the "tag_name" tag
Select the formatable:	at to be used for the payload in Json format using the following
%c	Device Client ID
%m	Device MAC Address
%e	Device IMEI
%d	date-time
%t	timestamp (number of seconds from 01/01/1970)
%x	text (only for "Publish Payload for Alarms")
%b	bulk (format specified in "Publish Bulk Format")
%n	Tag name (only for "Publish Bulk Format")
%v	Tag value (only in "Publish Bulk Format")
%i	Tag validity flag (only in "Publish Bulk Format")
%j[field]	Adds double quotes " to [field]. The double quotes represent a string in JSON
%\$tag_name\$	Value of the "tag_name" tag
%#tag_name#	Validity of the "tag_name" tag
Select the forma	t for "bulk mode" according to the following table:
%c	Device Client ID
%m	Device MAC Address
%e	Device IMEI
%d	Date/Time
%t	timestamp (number of seconds from 01/01/1970)
%x	text (only for "Publish Payload for Alarms")
%b	bulk (format specified in "Publish Bulk Format")
%n	Tag name (only for "Publish Bulk Format")
%v	Tag value (only in "Publish Bulk Format")
%i	Tag validity flag (only in "Publish Bulk Format")
	%j[field] %\$tag_name\$ %#tag_name# Select the formatable: %c %m %e %d %t %x %b %n %v %i %j[field] %\$tag_name\$ %#tag_name# Select the formatable: %c %m %v %i %j[field] %\$tag_name# Select the formatable:

		Adda double quotos " to [field]. The double quotes "surres of a
	%j[field]	Adds double quotes " to [field]. The double quotes represent a string in JSON
	%\$tag_name\$	Value of the "tag_name" tag
	%#tag_name#	Validity of the "tag_name" tag
Publish Topic for Alarms	Select the forma	t for topic names in alarms according to the following table:
	%с	Device Client ID
	%m	Device MAC Address
	%e	Device IMEI
	%d	Date/Time
	%t	timestamp (number of seconds from 01/01/1970)
	%x	text (only for "Publish Payload for Alarms")
	%b	bulk (format specified in "Publish Bulk Format")
	%n	Tag name (only for "Publish Bulk Format")
	%v	Tag value (only in "Publish Bulk Format")
	%i	Tag validity flag (only in "Publish Bulk Format")
	%j[field]	Adds double quotes " to [field]. The double quotes represent a string in JSON
	%\$tag_name\$	Value of the "tag_name" tag
	%#tag_name#	Validity of the "tag_name" tag
Subscribe Topic	Select the Topic	Subscribe according to the following table:
	%c	Device Client ID
	%m	Device MAC Address
	%e	Device IMEI
	%d	Date/Time
	%t	timestamp (number of seconds from 01/01/1970)
	%x	text (only for "Publish Payload for Alarms")
	%b	bulk (format specified in "Publish Bulk Format")
	%n	Tag name (only for "Publish Bulk Format")
	%v	Tag value (only in "Publish Bulk Format")
	%i	Tag validity flag (only in "Publish Bulk Format")
	%j[field]	Adds double quotes " to [field]. The double quotes represent a string in JSON
	%\$tag_name\$	Value of the "tag_name" tag
	0/ #tag name#	Validity of the "tag_name" tag

LWT Topic	Select the "Last Weel and Testament" topic according to the following table:		
	%с	Device Client ID	
	%m	Device MAC Address	
	%e	Device IMEI	
	%d	Date/Time	
	%t	timestamp (number of seconds from 01/01/1970)	
	%x	text (only for "Publish Payload for Alarms")	
	%b	bulk (format specified in "Publish Bulk Format")	
	%n	Tag name (only for "Publish Bulk Format")	
	%v	Tag value (only in "Publish Bulk Format")	
	%i	Tag validity flag (only in "Publish Bulk Format")	
	%j[field]	Adds double quotes " to [field]. The double quotes represent a string in JSON	
	%\$tag_name\$	Value of the "tag_name" tag	
	%#tag_name#	Validity of the "tag_name" tag	
LWT Payload	Select the Payload text of "Last Weel and Testament"		
Save Configuration URL	This is the URL for the "Save Configuration" command received from mqtt		
Load Configuration URL	This is the URL for the "Load Configuration" command received from mqtt		
FW Update URL	This is the URL for the "FW Update" command received from mqtt		
Sleep Timeout	MQTT task wake-up time, the shorter it is, the more responsive MQTT is (at the		
	expense of higher CPU load).		
MQTT Certificates	It is used to mar	nage the certificates necessary for the TLS connection.	

22.29. PHONEBOOK (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

This page is used to configure the address book for sending text messages by the device via email and/or (on models equipped with a modem) SMS.

It is possible to define three different account profiles:

Admin

This account receives alarms via SMS or EMAIL from any group.

This account can send SMS commands to the device.

It also receives all rejected or unrecognised SMS commands if the "SMS Relay to Admin" parameter is set to ON and all "Startup SMS" messages if the "Startup SMS" parameter is set to ON;

Manager

This account receives alarms via SMS or EMAIL from the group to which it belongs.

This account can send SMS commands to the device.

User

This account receives alarms via SMS or EMAIL from the group to which it belongs.

At the time of compilation, the group(s) to which the account belongs is required, so you can divide the text alerts between the various accounts.

Note how "Admin" accounts receive alarms from any group.

22.30. MESSAGE CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

In this section it is possible define the text messages related to the alarms that the device must manage. The message text can only contain ASCII characters.

It is possible to use the {TAG_NAME} syntax to include the current value of a tag in your text.

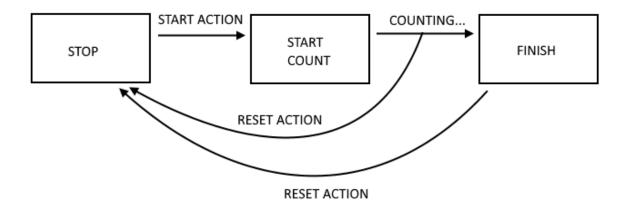
The syntax allows you to add the current value of the tag whose name is the one defined within the curly brackets.

This syntax can be used more than once in a message text.

Each message has an ID field which is used to associate the message to the alarm.

22.31. TIMER CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

This section allows you to define up to 100 timers to be used in logic rules.


The ID represents the mnemonic of the timer that must be used in the rules.

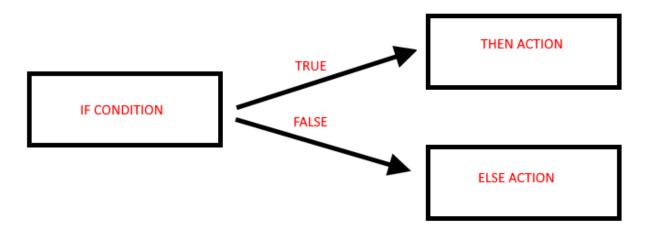
"Enable" selects whether the timer is active or not.

"Duration" is the activation value in [ms].

Note

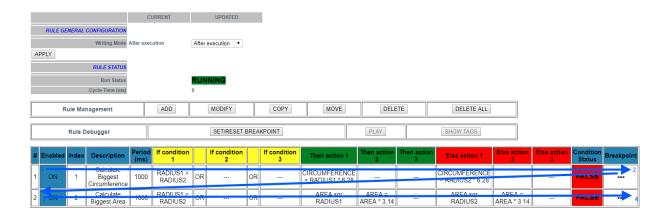
The timers are in stop mode by default, they need an action to start and an action to restore, according to the following scheme:

22.32. RULE MANAGEMENT (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

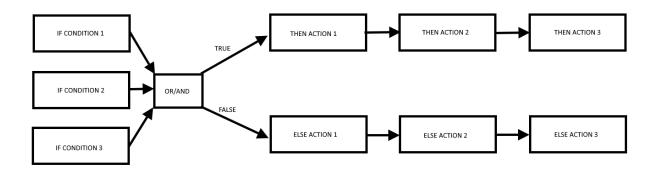

In this section you can define a set of logical rules that will implement a program.

For example it is possible to run programs that use internal or external IO, send text messages and/or writes via MODBUS / EMAIL / SMS / http / MQTT etc... even using complex mathematical operations.

Rules can also be debugged through step-by-step execution and the use of breakpoints that block program execution on a specific line (rule).


A rule consists of one or more "If Condition", one or more "Then Action" and one or more "Else Action".

Schematically a rule performs the following flow:


If the "IF" condition is true, the "THEN" action is executed, otherwise the "ELSE" action is executed.

The rules are executed from top to bottom and from left to right (in figure 1-> 2-> 3-> 4):

When all the rules are executed, the execution starts again from the first one. More in detail the correct diagram is:

It is in fact possible to define up to 3 if conditions and up to 3 actions for both the THEN and ELSE state.

The "IF conditions" can be combined together in "OR" or "AND" logic, in practice:

The "IF conditions" linked together by "OR" go to the THEN state if at least one of the conditions is true.

The "IF conditions" linked together by "AND" only go to the THEN state if all of them are true.

More details are given in the following table:

IF CONDITION 1	IF CONDITION 2	IF CONDITION 3	"OR" RESULT	"AND" RESULT
FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	FALSE	TRUE	TRUE	FALSE
FALSE	TRUE	FALSE	TRUE	FALSE
FALSE	TRUE	TRUE	TRUE	FALSE
TRUE	FALSE	FALSE	TRUE	FALSE
TRUE	FALSE	TRUE	TRUE	FALSE
TRUE	TRUE	FALSE	TRUE	FALSE
TRUE	TRUE	TRUE	TRUE	TRUE

It is possible to create up to 2000 different rules.

You can configure a rule to perform actions:

- -Only when there is a change in the "OR / AND" result
- -At each loop

In the "Rule General Configuration" you can choose when Tags are written to shared memory, you can choose between "After Execution" or "During Execution".

With "After Execution", you get tag values written to shared memory only when you've executed all the rules. With "During Execution", you get tag values written to shared memory at the end of each rule.

Therefore, using the "After Execution" mode, the new tag values will only be updated at the end of all rules (even tags that must be written on MODBUS RTU / TCP-IP).

The rule status will show the execution status (if the rules are in execution or pause mode) and the loop time which represents the time taken to execute all the rules (note that if you need to write tags with modbus protocol, the loop time will also include the time taken for this operation):

To configure a rule, the parameters explained in the following table are available:

Field	Meaning
Enabled	Indicates whether the rule is enabled or should be excluded from execution
Index	Rule execution order (1 = First rule to be executed)
Description	Mnemonic textual description of the rule
Period [ms]	If the value is = 0, actions are executed only if there is a change in the result of the "OR / AND" (i.e. on change of state).
	If the value is different from 0 ms the actions are performed trying to respect the inserted timing.
	Do not use small period values for sending EMAIL / SMS / HTTP / MQTT actions!
	NOTE:
	If Period is > 0 the actions are always performed in "repeat" mode
If Condition X Type Where X=[13]	This parameter defines the type of condition, for each of the three "if conditions" available (13)
	The possible types are:
	None
	No conditions to be assessed
	Alarm State See 22.32.1
	Alarm Active
	See 22.32.2
	Always
	The If condition is always true.
	Note that the rule is only executed once if Period is = 0 ms or if the actions are in one
	time mode.
	If you need to execute a rule at each cycle, you need to put the actions in "repeat mode".
	If you need to run a rule every xx ms, you must set Period> 0ms.
	in you need to full a fallo every XX me, you must set i enour oms.
	Digital Tag
	See 22.32.3
	Analog Tag
	See 22.32.4
	Timer

	See 22.32.5
	Scheduler
	See 22.32.6
	Rule Status
	See 22.32.7
	Bitmask
	See 22.32.8
If Condition	The possible types are: OR / AND
Operator	The IF conditions can be combined in Boolean OR or AND operations.
Then/Else	This parameter defines the type of action, for each of the three "actions then/other"
Action X	available
where X=[13]	The possible types of action are divided by type:
	None
	No action
	Send Alarm SMS
	Send Alarm EMAIL
	Send Alarm HTTP POST
	Send Alarm MQTT
	Allow to send a text message (defined in the messages section) of alarm through the
	available protocols
	available protocolo
	Digital Tag
	See 22.32.9
	Analog Tag
	See 22.32.10
	Timer
	It is possible to coloct the action to be weatermed in the times to the
	It is possible to select the action to be performed in the timer between
	"Start" will start a timer to count
	"Reset" will reset the timer to the stop state.
	Scheduler
	See 22.32.6
	Datalogger
	Allows you to start or stop the datalogger.
	Network

User Manual

These are actions that allow you to act on the status of the VPN (enable or disable it) or the modem.

Set Bits

Allows you to bring a configurable number of bits of a given tag to the value 1 or 0.

22.32.1."ALARM STATE" PARAMETERS

Field	Meaning	
Alarm Name	The alarm name can be selected from the list of all configured alarms	
Alarm State	Alarm status.	
	Possible states are:	
	- None	
	- Alarm (digital only)	
	- Alarm Low Low (analog only)	
	- Alarm Low (analog only)	
	- Alarm High (analog only)	
	- Alarm High High (analog only)	
	- Acknowledge	
	- Return	
	- End	
	Depending on the type (digital or analog) of the selected alarm, some states	
	are disabled	
Analog Danger	Flag indicating whether the alarm level must be "Analog Danger" or not,	
Alarm	applies only to alarms on analog tags	

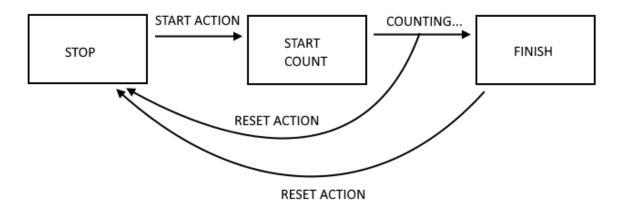
22.32.2."ALARM ACTIVE" PARAMETERS

Field	Meaning	
Alarm Name	The alarm name can be selected from the list of all configured alarms	
Alarm Active	Indicates whether or not the alarm should be active.	
	The alarm is active if it is in one of these states:	
	- Alarm (only for digital tags)	
	- Alarm Low Low (only for analog tags)	
	- Alarm Low (only for analog tags)	
	- Alarm High (only for analog tags)	
	- Alarm High High (only for analog tags)	
	- Acknowledge	
	The alarm is not active if it is in one of the following states:	
	- None	
	- Return	
	- End	
Analog Danger Alarm	Flag indicating whether the alarm level should be "Analog Danger" or	
	not, significant only for analog alarms.	

22.32.3. "DIGITAL TAG" PARAMETERS

Field	Meaning
Tag	Select the tag to be used for the
	condition
Operator	Only "=" may apply
Tag / Constant value	Select whether the comparison
	is between a tag or a constant
	Boolean value

22.32.4."ANALOG TAG" PARAMETERS


Field	Meaning
Tag	Select the tag to be used for the
	condition
Operator	It may apply :
	<i>"="</i>
	">"
	"<"
	">="
	"<="
Tag / Constant value	Select whether the comparison
	is between a tag or a constant
	value

22.32.5. "TIMER" PARAMETERS

Field	Meaning
ID	Select the timer ID to use
Expired	It can be:
	"OFF" or "ON"
	With "ON" the condition is only
	true when the timer expires
	(FINISH status).
	With "OFF" the condition is true
	until the timer is in STOP or
	COUNTING STATE. When the
	timer is in FINISH state the
	condition becomes false.

The operation of the Timer is shown in the following diagram:

22.32.6. "SCHEDULER" PARAMETERS

Field	Meaning
Туре	It may be:
	Daily, Weekly Monthly
	Daily: the condition is true every day at the configured hour and minute
	Weekly: the condition is true on the selected day of the week at the selected hour
	and minute
	Monthly: the condition is true on the selected day of the month at the selected
	hour and minute
Day	If the type is Weekly sets the day of the week:
	0 = Sunday
	1 = Monday
	2 = Tuesday
	3 = Wednesday
	4 = Thursday
	5 = Friday
	6 = Saturday
	If the type is Monthly:
	Select the day of the month from 1 to 31
Hour	Hours
Minute	Minutes

22.32.7 "RULE STATUS" PARAMETERS

Field	Meaning
ID	Select the rule ID
Enabled	Select between "enabled" or "disabled
	If "Enabled" the condition is REAL if the selected rule is enabled.
	If "Disabled" the condition is REAL if the selected Rule is disabled.

22.32.8."BIT MASK" PARAMETERS

Field	Meaning
Tag	Select the tag to apply the bit mask to from a list containing all tags with "16Bit
	Unsigned" data type and bit index 0
Mask	The bit mask represented as a string of 4 hexadecimal digits

The "Bit mask" condition is TRUE if the AND operation bit by bit between the Tag and the Data Mask is different from 0; FALSE otherwise.

22.32.9. "DIGITAL TAG" PARAMETERS

Field	Meaning
Action Mode	select from "One Time" or "Repeat".
	With "One Time" actions are only performed if there is a change in the result of the OR / AND conditions.
	With "Repeat" Actions are performed at each loop (if the rule is enabled
	and there is no configured period).
Destination Tag	This is the tag where the calculated result is copied to
Operator	This is the Boolean operator to use, selected from =, NOT, OR etc
Source Tag 1 /	Select the tag to use in the boolano calculation.
Constant value 1	It is also possible to use a boolean constant
Source Tag 2 /	Select the second Tag if the operator needs 2 inputs (For example
Constant value 2	operator "OR"). It is also possible to use a boolean constant

22.32.10. "ANALOG TAG" PARAMETERS

Field	Meaning
Action Mode	select from "One Time" or "Repeat".
	With "One Time" actions are only performed if there is a change in the result of the OR / AND conditions.
	With "Repeat" Actions are performed at each loop (if the rule is enabled
	and there is no configured period).
Destination Tag	This is the tag where the calculated result is copied to
Operator	It is the mathematical operator to use, you can select from: "=" copies the source tag 1 or the constant value 1 to the destination tag
	Example: Destination tag = Origin tag 1
	Or
	Target tag = constant value 1
	"+ ="
	Add the value of the source tag1 or the constant value 1 to the target tag and copy the result to the target tag.

Example:

Destination tag = Destination tag + Origin tag 1

"-="

Subtracts the value of the source tag1 from the target tag and copies the result to the target tag.

Example:

Destination tag = Destination tag - Origin tag 1

"* ="

Multiply the target tag by the value of source tag 1 and copy the result to the target tag.

Example:

Destination tag = Destination tag * Origin tag 1

"/="

Splits the target tag with the source tag value 1 and copies the result to the target tag.

Example:

Destination tag = Destination tag / Origin tag 1

"% ="

Calculates the rest of the division from the target tag and the value of the source tag1 and copies the result to the target tag.

(Note that 53% 7 = 4)

Example:

Destination tag = Destination tag% Source tag1

"abs"

Calculates the absolute value of Source Tag 1 / Constant value 1 and copies the result to the Destination Tag

(Note that abs (-4) = 4)

Example:

Target tag = abs (Source tag 1)

"Sqrt"

Calculates the square root value of source tag 1 / constant value 1 and copies the result to the target tag.

(Note that sqrt $(9) = \sqrt{9} = 3$)

Example:

Destination tag = sqrt (origin tag 1)

"Sqr"

Calculates the square value of the source tag 1 / constant value 1 and copies the result to the target tag.

(Note that sqr $(3) = 3^2 = 9$)

Example:

Destination tag = sqr (origin tag 1)

"Log"

Calculates the decimal logarithm of source tag 1 / constant value 1 and copies the result to the target tag.

(Note that $\log (3) = 0.4771212$)

Example:

Destination tag = log (origin tag 1)

"Ln"

Calculates the natural logarithm of the source tag 1 / constant value 1 and copies the result to the target tag.

(Note that $\ln(3) = 1.09861228867$)

Example:

Target tag = In (Source tag 1)

"Exp"

Calculate the number of Euler elevated to Source Tag 1 / Constant value 1 and copy the result to the Destination Tag.

(Note that

exp [(3) = e^3 = 20,0855369232]

In (exp (3)) = 3

Example:

Destination tag = expiration (origin tag 1)

"+"

Sum to Source Tag 1 / Constant value 1 With the value of Source Tag 2 / Constant value 2 and copies the result to the Destination Tag.

Example:

Target tag = Source tag 1+ Source tag 2

"_"

Subtract the source tag 1 / constant value 1 with the value of source tag 2 / constant value 2 and copy the result to the target tag.

Example:

Destination tag = Origin tag 1- Origin tag 2

11*11

Multiply the source tag 1 / constant value 1 with the source tag 2 / constant value 2 and copy the result to the target tag.

Example:

Target tag = Source tag 1 * Source tag 2

"/"

Split the source tag 1 / constant value 1 with the source tag 2 / constant value 2 and copy the result to the target tag.

Example:

Target Tag = Source Tag 1 / Source Tag 2

"%"

Calculates the rest of the division between source tag 1 / constant value 1 and source tag 2 / constant value 2 and copies the result to the target tag.

(Note that 53% 7 = 4)

Example:

Target tag = Source tag 1% Source tag 2

"Pow"

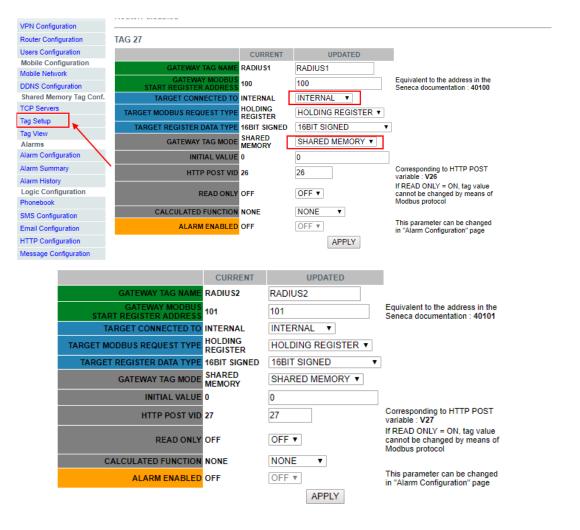
Calculates the Source Tag1 / Constant value 1 elevated to the power of the Sorce Tag2 / Constant value 2

and copies the result to the destination tag.

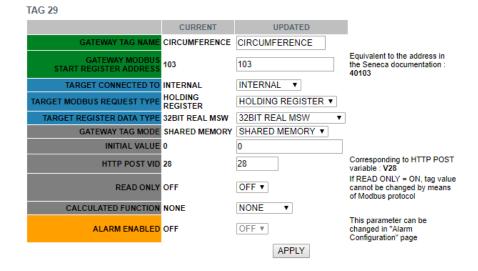
Example:

DestinationTag = [Source Tag1] ^ (Source Tag2)

Source Tag 1 /	Select the tag to be used as input 1 for the operator used. You can also
Constant value 1	use a constant value.
Source Tag 2 /	Select the Tag to use as input 2 in the calculation if the operator needs 2
Constant value 2	inputs.
	You can also use a constant value.

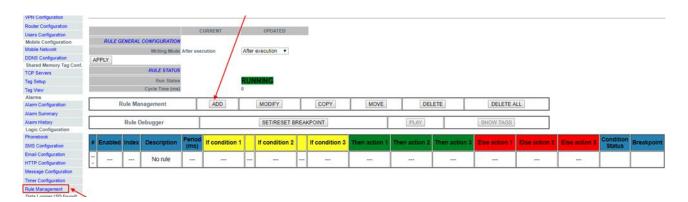

22.32.11. EXAMPLE OF THE IMPLEMENTATION OF A PROGRAM WITH LOGICAL RULES

We will create an example program that calculates the Maximum Circumference and Maximum Area from 2 different radii.


First of all we add the Tags we need for the program:

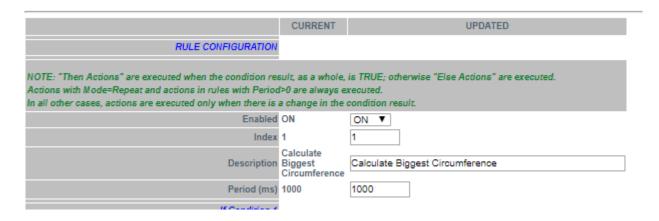
We define the Radius1 and Radius2 tags as integer type

Circumference e Area in Real 32 bits (floating point single precision) type:

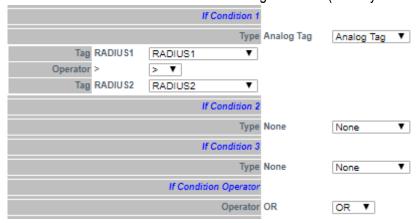


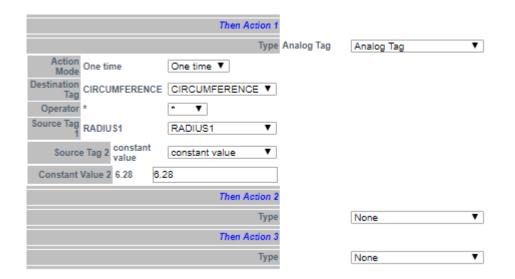
TAG 30 UPDATED CURRENT AREA Equivalent to the address in the 105 105 INTERNAL INTERNAL HOLDING REGISTER HOLDING REGISTER ▼ TARGET MODBUS REQUEST TYPE 32BIT REAL MSW TARGET REGISTER DATA TYPE 32BIT REAL MSW SHARED MEMORY SHARED MEMORY ▼ GATEWAY TAG MODE **INITIAL VALUE 0** 0 Corresponding to HTTP POST variable : V29 HTTP POST VID 29 29 If READ ONLY = ON, tag value OFF ▼ cannot be changed by means of Modbus protocol **READ ONLY OFF** CALCULATED FUNCTION NONE NONE This parameter can be changed in "Alarm Configuration" page ALARM ENABLED OFF OFF ▼ APPLY

Now click on "Rules Management" and then on ADD to add a new rule:

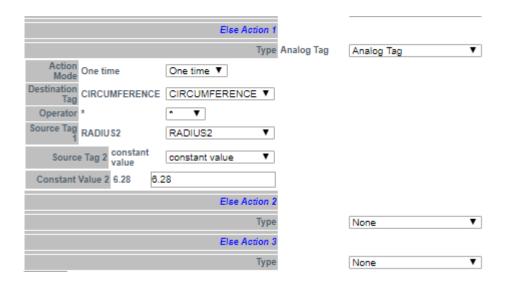


Let us now create the first rule to calculate the circumference using the largest radius between Radius1 and Radius2:


We need the rule to be performed every 1000 ms:

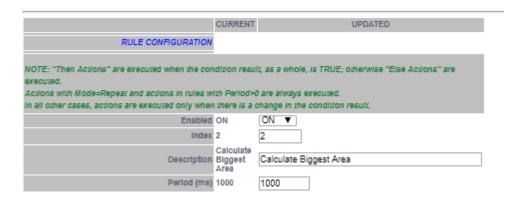


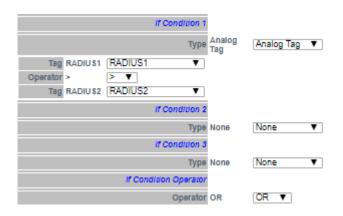
Then we add the "if condition" to determine which is the largest radius (we only need 1 if condition):


So, if the condition is true then Radius1> Radius2 we must then calculate the circumference with Radius1: Circumference = Radius1 * 6.28:

Otherwise Radius 1 < Radius 2 then we must calculate the circumference with Radius 2 (Circumference = Radius 2 * 6.28):

User Manual




Now click "APPLY" to save the first rule:

In the same way we create the Second Rule to calculate the Area with the largest radius: This rule must also be performed every 1000ms:

The "if condition" is the same as the first rule:

Now we have to calculate the AREA using the following calculation:

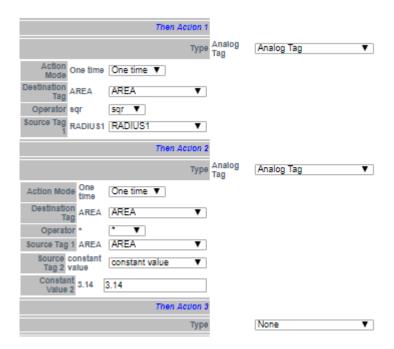
 $AREA = ([RADIUS] ^ 2) * 3.14$

We have to break the formula in two phases:

In the first phase we calculate:

AREA = (RADIUS1) ^ 2

And in the second:

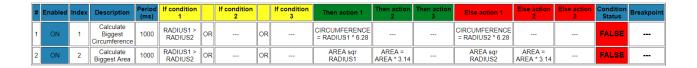

AREA = AREA * 3.14

So in our rule if RADIUS1> RADIUS2 we calculate AREA with RADIUS1 using the square function (sqr):

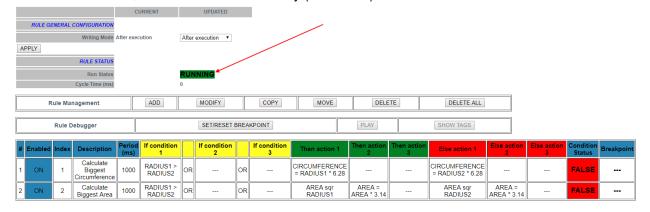
AREA = sqr (RADIUS1)

And then

AREA = AREA * 3.14



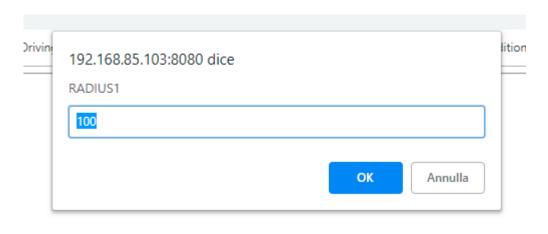
So if RADIUS1 <RADIUS2 we calculate AREA with RADIUS2:

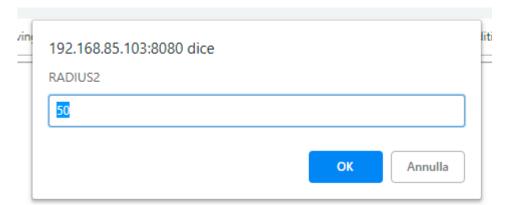


Now click on "APPLY" to save the second rule as well:

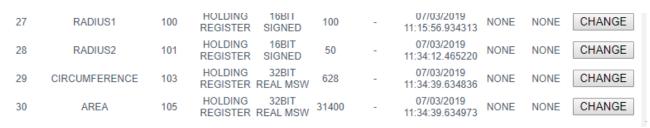
Now we can test how our programme works:

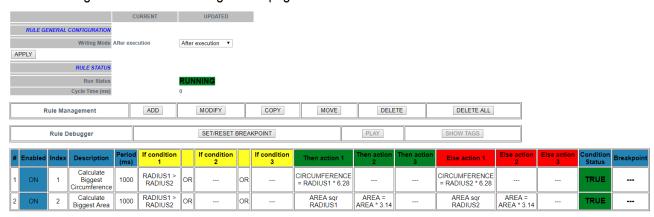
When a rule is added, the rule starts automatically (RUNNING):



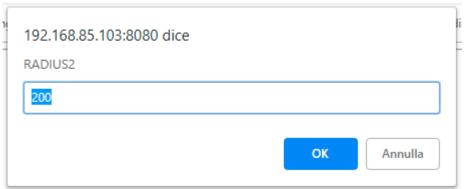

To test the program we can write the tags RADIUS1 and RADIUS2 from Modbus RTU / MODBUS TCP-IP (registers 40100-40101 in our example) or using the "Tag View" page:

Now change RADIUS1 = 100 and RADIUS2 = 50 by clicking the "CHANGE" button:

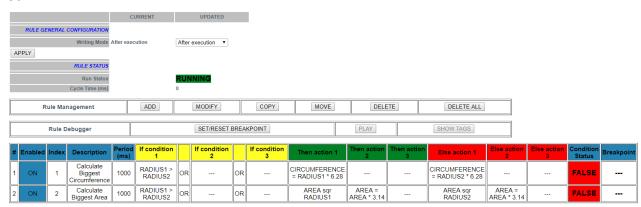



In the Tag view the CIRCONFERENCE and AREA calculations are updated:

User Manual



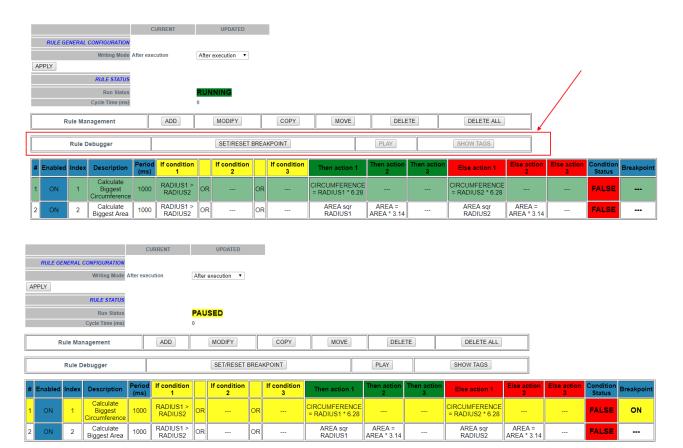
Now we can go to the "Rules Mamagement" page to view the result:



So both conditions if they are TRUE (penultimate column) and then "Then actions" are executed.

Now we change the RADIUS2 value in the tag display pages to 200:

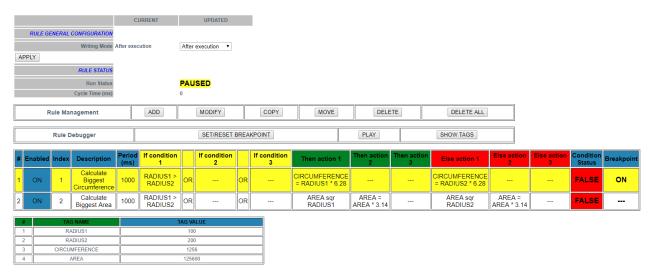
So:


Now the condition status of the 2 rules is false because RADIUS1 <RADIUS2, so the "Else Actions" are executed

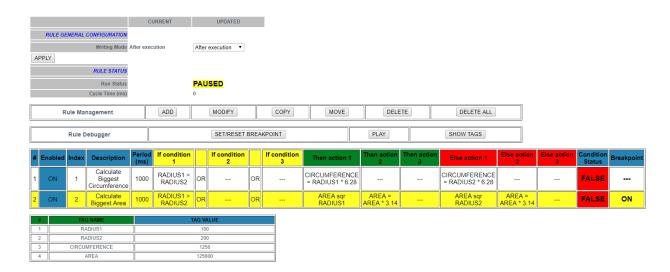
It is also possible to debug the program using the internal rule debugger.

With the internal debugger it is possible:

- -Insert a breakpoint before the execution of a rule
- -View the tag values before / after the execution of a rule


To add a breakpoint and stop the program flow select the rule and then press "SET / RESET BREAKPOINT":

The rule turns yellow and the rule status changes to "Paused". Note that the breakpoint is before the rule execution.


Clicking "Show tags" displays the tag values before the selected rule is executed.

Now you can move the breakpoint to the next rule, then select the next rule and press the "SET / RESET BREAKPOINT" button:

Pressing the "PLAY" button will stop the execution before the next rule is executed:

22.33. DATALOGGER: GENERAL SETTINGS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

This section allows to define ithe general parameters of the datalogger, in particular to edit how the content of the logs will look like.

The datalogger works with the following protocols:

- -Copy to USB,
- -EMAIL sending
- -FTP sending
- -Post http (if active only for group 1)
- -Send MQTT (will only send from group 1, the other groups are also available for the other protocols)

In this section there is a special enable for sending logs on http because it is possible to use the http channel even only for sending notifications.

- -Sending order: The most recent or oldest files are sent first (in case of failure to communicate with the server, the device will buffer the data and send it as soon as the server becomes available according to this logic).
- -And you can also configure: the format of the date and time of the sample, the type of separator, the number of decimal places, the presence or absence of further columns, etc.

22.34. GROUP CONFIGURATION (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

Here it is possible to select which of the 4 log groups should be activated and the type of log to be made. I is possible to set a group "disabled".

It is possible to activate the following datalogger modes for each of the 4 groups:

Field	Meaning
Sampling Mode	Disabled: the group is disabled.
	-Periodic: All configured tags are acquired with the set time
	-Periodic and trigger: All configured tags are acquired with the set time and on
	trigger action. The trigger action can be configured in the logic section see 22.32
	(when a certain series of conditions are fulfilled, the trigger action is executed and
	the tags are forced to be acquired).
Sampling Period (s)	This parameter defines the sampling period, in seconds.
	Minimum: 1 s, Maximum: 7200 s
Transfer Period (min)	This parameter defines the transfer period, in minutes; i.e. each time interval
	defined by this parameter the log file is closed and transferred.
	Minimum: 1 min, Maximum: 43200 min

22.35. USB FILE MANAGER (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

This page allows you to download the log files to your PC. It is also possible to send files to the device.

22.36. DATA LOGGER (R-PASS-S, Z-PASS2-RT-S, Z-TWS4-RT-S ONLY)

Allows you to access the files saved on the connected USB stick.

22.37. ETHERNET INTERFACES

The addresses and statistics of the device's Ethernet ports are shown here.

22.38. MODBUS SERIAL TRACE (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT MODELS ONLY)

This is a serial sniffer useful for analyzing serial traffic. It is also possible to export the traffic for later analysis.

22.39. METER-BUS PROTOCOL (M-BUS) (R-PASS-S, Z-PASS2-RT-S, Z-TWS4-RT-S ONLY)

To connect to an M-Bus fieldbus it is necessary to carry out the following steps:

- 1) connect the optional RS232-MBUS Seneca "Z-MBUS" adapter to the COM1 serial port;
- 2) setting the COM1 mode to M-BUS.

The following resources are available to manage M-Bus devices:

- the web pages of the "M-Bus" section.
- the MBUS_READ_CTL function
- the MBUS_WRITE_RAW function block

The M-BUS web pages allow you to scan the bus, search for devices, detect their primary or secondary addresses; it also allows you to read data records and slave information from a device and create configuration files for import into the Straton PLC.

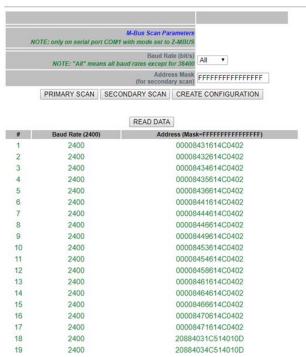
The MBUS_READ_CTL FB allows you to start/stop the M-BUS acquisition;

the MBUS_WRITE_RAW FB allows you to build and send a generic M-Bus frame, thus providing a flexible way to send configuration commands to M-Bus devices.

22.39.1.M-BUS SCAN

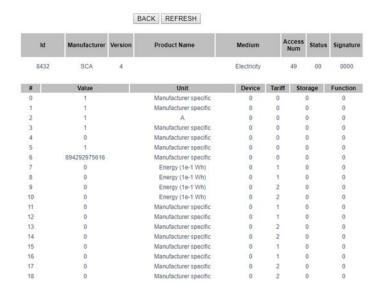
The "SECONDARY SCAN" button lets you scan the bus, detecting M-Bus secondary addresses; select the correct baud-rate for the COM1 serial port or select "All" to repeat the scan for any possible baud-rate¹; then click on the button; a confirmation pop-up will be shown.

The "SECONDARY SCAN" button allows you to scan the bus, detecting the M-Bus secondary addresses; select the correct baud-rate for the COM1 serial port or select "ALL" to repeat the scan for each possible baud-rate; then click the button; a confirmation pop-up will appear.


The scanning procedure may take several minutes to complete, so the page shows the number of seconds that have elapsed; devices are displayed in terms of secondary address and baud rate as soon as they are detected.

M-Bus scan in progress with baud rate 2400, please wait... (55 seconds elapsed) STOP SCAN Baud Rate (2400) Address (Mask=FFFFFFFFFFFFFF) 00008431614C0402 2 2400 00008432614C0402 3 00008434614C0402 2400 4 2400 00008435614C0402 5 2400 00008436614C0402 6 2400 00008441614C0402 7 2400 00008444614C0402 8 2400 00008446614C0402 9 2400 00008449614C0402 10 2400 00008453614C0402 11 2400 00008454614C0402

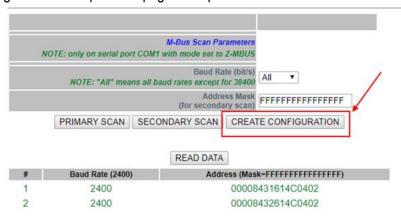
The "STOP SCAN" button allows you to cancel the procedure; however the partial results are kept. At the end of the procedure, the webserver indicates the end of the scan and then the following page is displayed:



The baud rate value shown in the table header reminds you of the parameter choice for the last scan procedure. The table with the detected M-Bus devices is stored permanently, so after switching the CPU off and on again the results of the last scan are still available; they will be overwritten by the next scan or deleted by a factory reset.

Similarly, the "PRIMARY SCAN" button allows you to scan the bus, detecting the primary M-Bus addresses; select the correct baud-rate for the COM1 serial port or select "All" to repeat the scan for every possible baud-rate.

It is possible to read the data from one of the devices, selecting the corresponding row and clicking on the "READ DATA" button, for example:

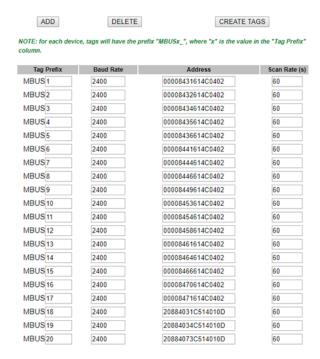

In this page:

- the first table contains only one line, which provides the "slave information";
- the second table contains a variable number of rows, each of which supplies a "data record".

By clicking on the "REFRESH" button it is possible to update the data; by clicking on the "BACK" button you return to the page with the device table.

22.39.2 "CREATE CONFIGURATION" BUTTON

Now you can go back to the previous pages and press the "CREATE CONFIGURATION" button.


This saves the current M-BUS configuration. The web server automatically moves to the next page of "M-Bus Configuration".

22.39.3.M-Bus Configuration

After pressing the "Create configuration" button in the M-Bus Scan page you get the following page in the M-Bus configuration:

The scan result can now be edited.

The first column represents the Tag Prefix name in Straton

The second column represents the Baud Rate to use.

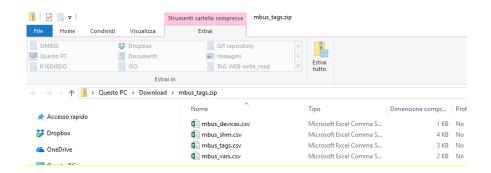
The third column represents the device address.

The fourth column represents the scan time in seconds for this device.

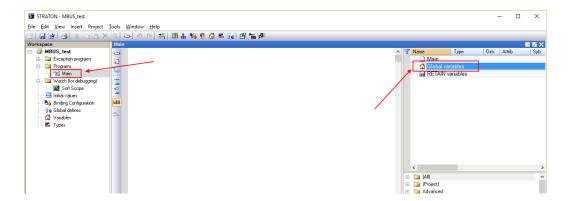
22.39.4.IMPORTING THE CONFIGURATION INTO STRATON

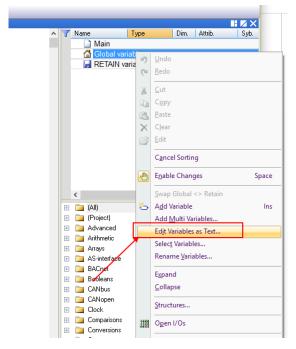
First of all we need to export the current configuration.

Now the automatic acquisition of tags starts:

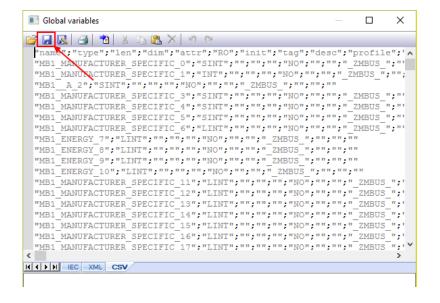

User Manual

At the end of the process a .zip file (mbus_tags.zip) will be downloaded by the browser:

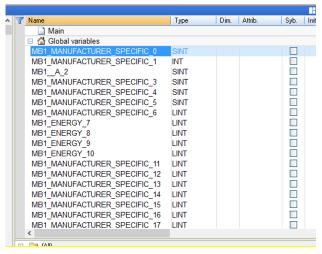

The .zip file contains 4 files:

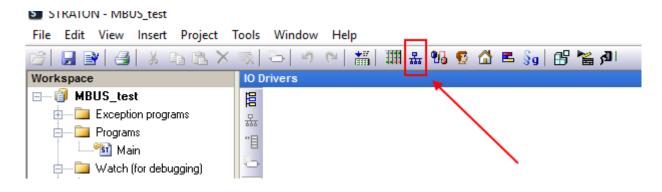

Two of these files are to be used in Straton: mbus_shm.csv (the shared memory configuration) mbus_vars.csv (the M-Bus vars) At this point, perform the following steps:

- 1) Extract the zip file to a directory.
- 2) Start Straton workbench
- 3) Select main and then Global variables:

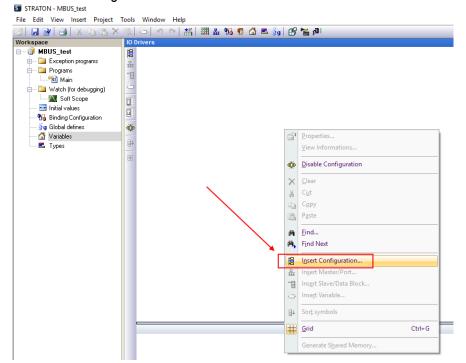

Click the right mouse button and select "Edit Variables as Text":

Open the "mbus_vars.csv" file with a text editor, copy and paste the list of variables into the "Global variables" module in Straton then save the configuration with the "disk" icon:

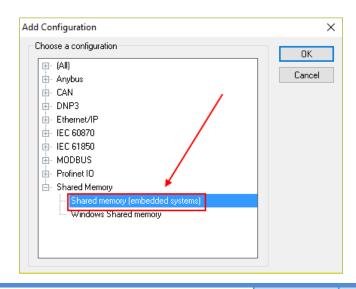



NOTE: The first line "name";"type";"len";...
must occur only once and only on the first line.

Now the variables are imported:

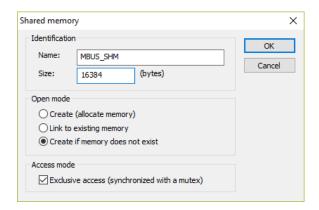


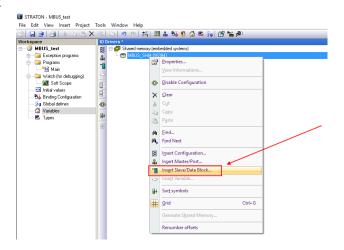
Now we need to create the shared memory used to share data from M-BUS: Click on the fieldbus icon:



Right-click and select "Insert Configuration":

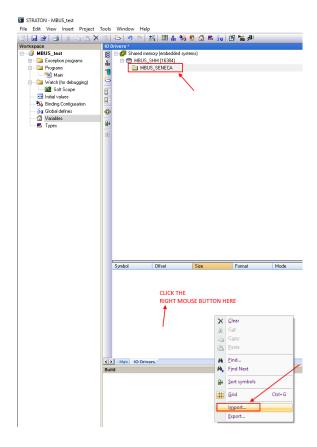
Now create the Shared Memory:



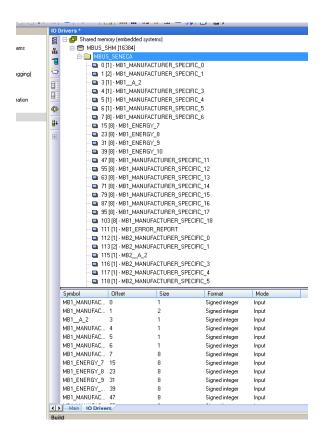

Enter a Master port:

The shared memory configuration must be as shown in the figure (do not change the setting):

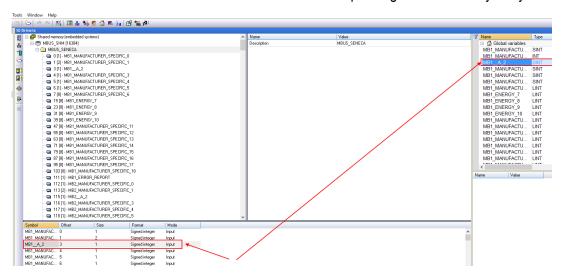
Now insert the data block:



Create a Group and enter a name:

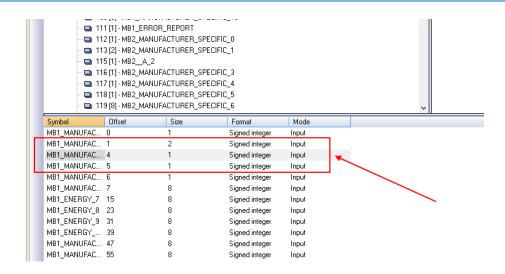


Now import the shared memory file:



Select the "mbus_shm.csv" file:

22.39.5.DELETING UNUSED MBUS VARIABLES


To delete one or more variables delete the variables and the corresponding shared memory entry:

Note that in the shared memory the offsets of other variables are not changed:

Page 143

22.39.6. REPLACING AN M-BUS DEVICE

To replace an existing M-BUS device (e.g. in case of replacement due to failure)

- 1. Go to M-BUS Scan and do a Secondary or Primary Scan
- 2. Make a note of the new address
- 3. Go to M-BUS Configuration and manually change the address from the old to the new device
- 4. Press the "Create Tag" button.
- 5. There is no need to make any modifications to the Straton

22.39.7.ADDING AN M-BUS DEVICE

- 1. Go to "M-BUS Scan" and run a secondary or primary scan
- 2. Note the new address and baud rate
- 3. Go to "M-BUS Configuration" and manually add the address and baud rate of the new device with the "ADD" button
- 4. Press the "Create Tag" button.
- 5. Import the shared memory file
- 6. Import the variable file without deleting your local variable (use copy-paste)

22.39.8 DELETING AN MBUS DEVICE

- 1. Go to M-BUS Scan and do a Secondary or Primary Scan
- 2. Note the address of the device to be deleted
- 3. Go to "M-BUS Configuration" and manually delete the device with the "Delete" button.
- 4. Press the "Create Tag" button.

- 5. Import the shared memory file
- 6. Delete the variables from the deleted device

22.39.9 "TAG ERROR REPORT" SPECIAL TAG

When variable tags are imported into Straton, a special "Tag error report" tag is created. Use this tag to monitor device communication errors:

VALUE OF THE "ERORR REPORT" TAG	MEANING
0	READING OK
-2	READING IN TIMEOUT,
	NO ANSWER FROM
	THE DEVICE

22.40. FIRMWARE VERSION

Returns the current firmware revision and the firmware on the emergency partition.

22.41 FIRMWARE UPGRADE

Allows you to update the firmware of the device.

22.42 MANAGEMENT CONF.

Allows you to export or import the configuration of the device (useful if you need to copy the configuration to another device).

It is also possible to save the system log files (debug log) to be sent to Seneca support.

22.43. LICENCE MANAGEMENT (SSD ONLY)

Here you can check which optional features are enabled under "Optional Features".

It is also possible to enter the activation keys provided by Seneca to add optional features to the device.

For more information please refer to Seneca support.

22,44. WEBSERVER WITH "GUEST" ACCOUNT

It is possible to access the device configuration site with a "guest" account; this account is allowed to access all pages except for the "FW Upgrade", "Configuration Management" and "USB File Manager", displaying all the configuration parameters and status information, without changing any parameters; therefore, in all pages, the "APPLY" buttons (and any other button used to make changes) are disabled.

To log in with a "guest" account, connect your browser to the IP address of the device on port 8080, for example: http://192.168.90.101:8080

and, when required, provide the following credentials (default values):

Username: guest Password: guest

22.45. WEBSERVER WITH "USER" ACCOUNT

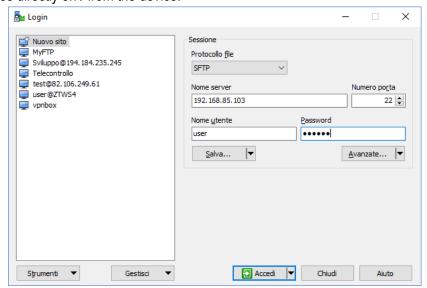
It is possible to access to the device configuration site with a "user" account; this account can only access the "Summary" and "Tag View" pages.

To log in with a "user" account, connect your browser to the IP address of the device on port 8080, for example: http://192.168.90.101:8080

and, when required, provide the following credentials (default values):

Username: user Password: user

22.46. FTP / SFTP ACCESS

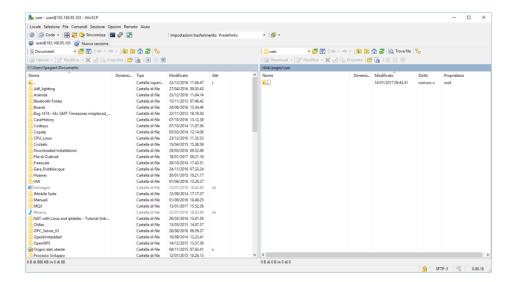

To easily access the device via FTP / SFTP, you can for example use the WINSCP program; you can download WINSCP for free from:

http://winscp.net/eng/download.php

Set the connection as in the following figure (the screen shows a connection to IP address 192.168.85.103):

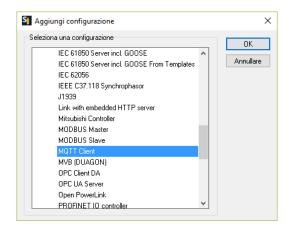
The credentials (username and password) are those ("user", "123456") set for "FTP USER".

After clicking on the "Login" button, a new window will appear, as in the following screen; on the right you can copy and delete files directly on / from the device.



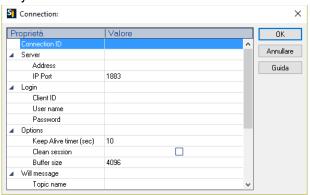
Doc: MI-00557-13

The WinSCP program can be used as both an FTP and SFTP client to transfer files from/to the device; just select the "FTP" or "SFTP" protocol in the "WinSCP Access" window; normally, it's best to use SFTP, as it provides a secure (i.e. encrypted) service.



23. MQTT CLIENT PROTOCOL (R-PASS-S, Z-PASS2-RT-S, Z-TWS4-RT-S ONLY)

The MQTT version supported is 3.1.1


To use the MQTT protocol it is necessary to use Straton workbench 9.3 or later.

To use the MQTT client select it from the Straton Workbench Fieldbus section:

23.1. PARAMETERS OF THE MQTT PROTOCOL FROM THE PLC PROGRAM

MQTT setup can be done directly from the workbench:

If it is necessary to configure these parameters from the Straton PLC program, a series of special words can be used which will load the configuration from a file.

The special words are:

In the "Address" field type: mqtt_par_address so that the "Address" field is obtained from the file:

/var/run/mqtt_par_address

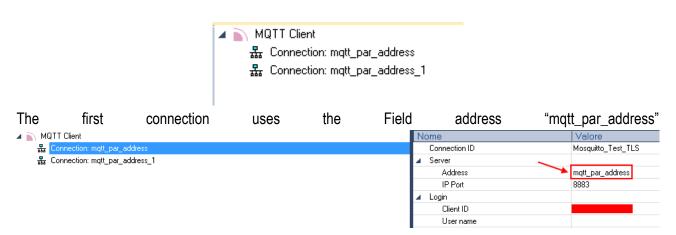
In the "Client ID" field type: mqtt par clientid so that the "Client ID" field is obtained from the file: /var/run/mqtt_par_clientid

In the "Username" field type: mqtt par username so that the "Username" field is obtained from the file:

/var/run/mqtt par username

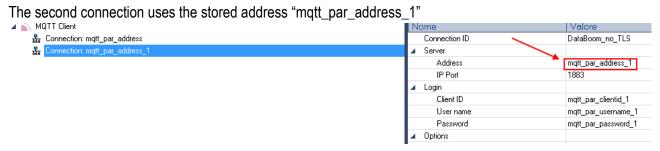
In the "Password" field type: mqtt_par_password so that the "Password" field is obtained from the file:

/var/esegui/mqtt par password


Warning!

the Address parameter must not contain an FQDN, but the IP address, this is because the FB MQTTCONNECT does not perform DNS resolution.

Alternatively, it may contain the name of the file (e.g.: mqtt_par_address), created in the /var/run directory by the FB DNS_RESOLVE and containing the result of DNS resolution.


23.1.1. MANAGING MULTIPLE MQTT CONNECTIONS

It is possible to manage multiple MQTT connections using parameters starting with the special words (mgtt par address123, mgtt par address aaa, ...), for example to create 2 mgtt connections:

Then it will load the address from the file:

/var/run/mqtt_par_address

this will load the address from the file:

/var/run/mqtt_par_address_1

(the technique can also be used for the other client id, username and password parameters).

23.2. MQTT CONFIGURATION OF SSL/TLS RETRYS

The default configuration for MQTT SSL/TLS connection is:

CONN _TRY_MAX = 10

CONN TRY WAIT = 1000 ms

Where:

CONN _TRY_MAX is the number of attempts to connect.

CONN_TRY_WAIT is the timeout of each connection attempt.

If you need to change this default configuration you need to create the file:

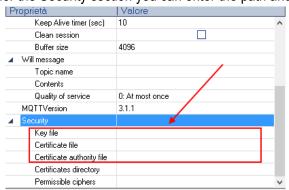
"ssl_con_try_params"

In this path:

"/var/esegui/"

With parameter values, for example:

root@Z-PASS2-S:~# cat /var/run/ssl_conn_try_params 50.200


It means CONN _TRY_MAX = 50 and CONN_TRY_WAIT = 200 ms.

NOTE1: At the end of the file you need to add an \n (new line character)

NOTE2: The file is loaded into a RAM filesystem, so you need to create it on every boot.

23.3. STATIC AND DYNAMIC CLIENT CERTIFICATES

In the MQTT configuration under the Security section you can enter the path and file name for the certificates:

Seneca suggests using the /config directory for certificates.

The MQTT client certificate can only be uploaded from the FTP server.

The key file is the client's private key file.

The certificate file is the client certificate.

The certification authority file is the certification authority certificate.

Warning!

The field "Certificate directory" is not used, so the file name must contain the absolute path e.g: "/config/mqtt/client.key".

If these files and other parameters need to be modified dynamically without recompiling the project, a file can be loaded into the /var/run directory with a file name that must start respectively with:

"mqtt_par_clientkey", "mqtt_par_clientcert", "mqtt_par_cacert"

The content of the files must be a text with the file name without the path.

Note that more than one certificate file can be used in a program, for example "mqtt_par_clientcert00", "mqtt_par_clientcert01" etc...

23.4. CHANGING MQTT PARAMETERS IN RUNTIME VIA FILE

You can change the port and the keepalive configuration by overwriting the current configuration with the following files in runtime:

"mqtt_par_port" and "mqtt_par_keepalive".

The content of the files must be a text with the new parameter value.

24. FACTORY RESET

With this procedure it is possible to obtain

- 1) All the parameters at the factory
- 2) All folders are cleared (and therefore all data log files and debugging files are deleted).

24.1. FACTORY RESET FOR SSD

To obtain a factory reset follow the following procedure:

- 1) Turn off the device
- 2) Reach the back of the device and locate the dip switches as shown in the picture:

- 3) Bring the dip switches in: DIP1 = OFF, DIP2 = ON, DIP3 = ON, DIP4 = ON
- 4) Switch the device on and wait until it has completed charging
- 5) With the device switched on, bring the dips in: DIP1 = OFF, DIP2 = ON, DIP3 = OFF, DIP4 = OFF

24.2. FACTORY RESET FOR R-PASS AND R-PASS-S

To obtain a factory reset follow the following procedure:

- 1) Turn off the device
- 2) Reach the back of the device and locate the dip switches as shown in the picture:

- 3) Bring the dip switches in: DIP1 = OFF, DIP2 = ON, DIP3 = ON, DIP4 = ON
- 4) Switch the device on and wait until it has completed charging
- 5) With the device switched on, bring the dips in: DIP1 = OFF, DIP2 = ON, DIP3 = OFF, DIP4 = OFF

24.3. FACTORY RESET FOR Z-PASS1-RT, Z-PASS2-RT, Z-TWS4-RT-S, Z-PASS2-RT-S

To obtain a factory reset follow the following procedure:

- 1) Turn off the device
- Reach the back of the device by removing the cover on the bottom of the device and locate the DIP SW1 set
- 3) Bring the dip switches in: DIP1 = ON, DIP2 = ON, DIP3 = ON, DIP4 = OFF, DIP5=ON, DIP6 = ON
- 4) Switch the device on and wait until it has completed charging
- 5) Bring the dips to: DIP1 = ON, DIP2 = ON, DIP3 = ON, DIP4 = OFF, DIP5=OFF, DIP6 = OFF

25. MAINTENANCE MODE (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT ONLY)

The maintenance mode can be activated via webserver or via modbus tcp-ip/RTU.

In the maintenance mode the tags cannot be written via the panel but only via the protocols (ethernet and serial). To enable the "maintenance mode" set the value of the "Maintenance Mode" register to 1.

26. MODBUS EMBEDDED I/O REGISTERS (SSD, R-PASS, Z-PASS1-RT, Z-PASS2-RT ONLY)

26.1. **SSD**

The registers representing I/Os are accessible via Modbus TCP-IP or RTU protocols and are shown in the table below:

Data Type	Digital I/Os	Indirizzo di default
Holding Registers	Bit 0: DI1 (LSB)	0 (40001)
	Bit 1: DI2	
Holding Registers	Bit 0: DO1 (LSB)	1 (40002)
	Bit 1: DO2	
Holding Registers	Bit 0: Maintenance Mode	2 (40003)
Holding Registers	Analog Input 1 (UINT16)	3 (40004)
Holding Registers	Analog Input 2 (UINT16)	4 (40005)
Holding Registers	Internet Access (0 = None, 1 =	50 (40051)
	ETH, 2 = WIFI, 3 = 4G)	
Discrete Inputs	DI1	0 (10001)
Discrete Inputs	DI2	1 (10002)
Coils	DO1	0
Coils	DO2	1

26.2. **R-PASS**

The registers representing the digital I/Os are accessible via Modbus TCP-IP or RTU protocol and are shown in the table below:

Data Type	Digital I/Os	Indirizzo di default
Holding Registers	Bit 0: DI1 (LSB)	0 (40001)
	Bit 1: DI2	
	Bit 2: DI3	
	Bit 3: DI4	
Holding Registers	Bit 0: DO1 (LSB)	1 (40002)
	Bit 1: DO2	
	Bit 2: DO3	
	Bit 3: DO4	
Holding Registers	Bit 0: Maintenance Mode	2 (40003)
Holding Registers	Internet Access (0 = None, 1 =	50 (40051)
	ETH, 2 = WIFI, 3 = 4G)	
Discrete Inputs	DI1	0 (10001)
Discrete Inputs	DI2	1 (10002)
Discrete Inputs	DI3	2 (10003)
Discrete Inputs	DI4	3 (10004)
Coils	DO1	0
Coils	DO2	1
Coils	DO3	2
Coils	DO4	3
Holding Registers	Analog Input 1 (UINT16)	3 (40004)
Holding Registers	Analog Input 2 (UINT16)	4 (40005)

26.3. **Z-PASS1-RT**, **Z-PASS2-RT**

The registers representing the digital I/Os are accessible via Modbus TCP-IP or RTU protocol and are shown in the table below:

Data Type	Digital I/Os	Indirizzo di default
Holding Registers	Bit 0: DI1 (LSB)	0 (40001)
	Bit 1: DI2	
	Bit 2: DI3	
	Bit 3: DI4	
	Bit 4: DI5	
	Bit 5: DI6	
Holding Registers	Bit 0: DO1 (LSB)	1 (40002)
	Bit 1: DO2	
	Bit 2: DO3	
	Bit 3: DO4	
	Bit 4: DO5	

	Bit 5: DO6	
Holding Registers	Bit 0: Maintenance Mode	2 (40003)
Holding Registers	Analog Input 1 (UINT16)	3 (40004)
Holding Registers	Analog Input 2 (UINT16)	4 (40005)
Holding Registers	Internet Access (0 = None, 1 =	50 (40051)
	ETH, 2 = WIFI, 3 = 4G)	
Discrete Inputs	DI1	0 (10001)
Discrete Inputs	DI2	1 (10002)
Discrete Inputs	DI3	2 (10003)
Discrete Inputs	DI4	3 (10004)
Discrete Inputs	DI5	4 (10005)
Discrete Inputs	DI6	5 (10006)
Coils	DO1	0
Coils	DO2	1
Coils	DO3	2
Coils	DO4	3
Coils	DO5	4
Coils	DO6	5

27. SMS Commands (R-PASS and Z-PASS2-RT models only)

On R-PASS+R-COMM and Z-PASS2-RT-4G devices, a number of features can be controlled by means of "SMS commands"; such features include setting up a mobile data (PPP) connection, activating the VPN Box functionality, setting a digital output etc.

SMS Commands can be sent by phone numbers that are present in the device Phonebook as "admin" or "manager" users; as an alternative, any phone number can send an SMS command, provided that the command contains a "password"; the password is made by the last four digits of the modem IMEI; so the command will have the following format (there must be a blank character between the "password" and the command text):

<last four IMEI digits> <command text>

Example:

6172 PPP ON

Please note that the command text can be written in any letter case, all uppercase, all lowercase or a mix between the two.

Any SMS command received from a number that is not recognized as an "admin" or "manager" user and does not contain the password will be discarded; as an option, these messages and all messages that are not recognized as valid commands can be "relayed" to the "admin" user.

Example:

PPP ON RELAYED

SMS commands substantially fall into two categories:

- "set" commands which execute an action
- "get" commands which ask for some information

While "get" commands always have an answer, "set commands" can be given an answer ("acknowledge") or not, depending on a configuration parameter.

Any response to a command, both "set" or "get", will contain the original message text, plus a result string, which can be:

"EXECUTING"

meaning that the command has been correctly processed; the "ING" form is used to tell that the procedure started by the command might not be completed yet

"FAILED"

meaning that the command could not be processed or something failed; in this case, an error string is present giving the failure reason

Examples:

```
PPP ON EXECUTING (100.70.179.88)
```

```
PPP ON FAILED (System PPP ON)
```

Obviously, the response to a "get" command also contains the requested info, if the command has been successfully processed.

Example:

```
GET DIN EXECUTING (1,0,0,0)
```

Finally, the whole SMS commands functionality can be disabled, if not needed, by means of a configuration parameter.

In the following paragraphs, the full list of supported commands is given along with the corresponding responses.

27.1. **PPP ON**

This command can be used to set up the mobile data (PPP) connection; the connection is set up using system configuration parameters (APN Mode, APN, Auth Type etc.).

If the command is successfully processed, the response contains the IP address assigned to the PPP network interface.

This command is rejected in the following case:

- if "Remote Connection Disable" (RCD) digital input is HIGH and "Security Level/Service Disable" parameter is set to "Internet Connection", the command will fail with the "Security Level error" error.

Also, if the connection setup procedure is not completed after a timeout (currently fixed to 30 seconds), the command will fail with the "Timeout error" error.

Please note that this command that does not enable the mobile data connection in a persistent way, so if the device is restarted, the mobile data (PPP) connection is not re-established.

Example:

```
→ PPP ON
← PPP ON EXECUTING (100.70.179.88)
```

27.2. **PPP OFF**

This command can be used to drop down the mobile data (PPP) connection set up by a previous "PPP ON" command.

Please note that this command does not disable the mobile data connection in a persistent way, so if the device is restarted, the mobile data (PPP) connection is re-established.

This command is never rejected.

- → PPP OFF
- ← PPP OFF EXECUTING

27.3. **PPP IP**

This command can be used to get the IP address assigned to the mobile data (PPP) connection; if the PPP connection is not active, the "dummy" IP address (0.0.0.0) will be given.

This command is never rejected.

Example:

```
→ PPP IP
← PPP IP EXECUTING (100.70.179.88)
```

27.4. **PPP CNF**

This command can be used to change the value of the system configuration parameters related to the mobile data (PPP) connection; the changes are persistent.

The command shall have the following format, where parameter values shall be separated by a blank character:

```
PPP CNF <APN mode> <APN> <Authentication Type> <Username> <Password> <PPP Connection Testing IP Address>
```

Please note that <u>all the parameters shall be present</u>, in the above order; no parameter can be <u>left</u> <u>empty.</u>

For the meaning of these parameters: <APN> and <Authentication Type> are numeric fields with the following values:

```
APN Mode
```

0: Automatic
1: Manual

Authentication Type

0: None

1: CHAP/PAP

2: CHAP only

3: PAP only

This command is rejected in the following case:

- if any of the command parameters is missing or invalid, the command will fail with the "Command parameter error".

```
→ PPP CNF 0 mobile.vodafone.it 0 user pass <a href="https://www.google.com">www.google.com</a>
← PPP CNF EXECUTING
```


27.5. **VPN ON**

This command can be used to activate the VPN Box functionality; the functionality is activated using system configuration parameters (Server, Password, Tag Name).

The command has two optional parameters, so its format is the following:

```
VPN ON [PPP] [NOFWL]<sup>2</sup>
"PPP"
```

if this parameter is present, the mobile data (PPP) connection is set up (if it's not already active), before activating the VPN Box functionality

"NOFWL"

if this parameter is present, the "Mobile Network Firewall" is disabled in the system configuration This command is rejected in the following cases:

- if the "custom" VPN functionality is enabled in the system configuration (parameter "VPN/Enable" = ON, "VPN Mode" = "OpenVPN"), the command will fail with the "System VPN ON" error;
- if "Remote Connection Disable" (RCD) digital input is HIGH and "Security Level/Service Disable" parameter is set to "VPN Connection" or "VPN Service" or "Internet Connection", the command will fail with the "Security Level error" error.

Please note that this command does not activate the VPN Box functionality in a persistent way, so if the device is restarted, the functionality is not re-activated.

Examples:

- VPN ON
- VPN ON EXECUTING
- VPN ON PPP
- VPN ON PPP EXECUTING
- VPN ON NOFWL
- VPN ON NOFWL EXECUTING
- VPN ON PPP NOFWL
- VPN ON PPP NOFWL EXECUTING

www.seneca.it

² Square brackets tell that parameter is optional.

27.6. **VPN OFF**

This command can be used to deactivate the VPN Box functionality activated by a previous "VPN ON" command; it also drops down the mobile data (PPP) connection set up by a previous "VPN ON PPP" command or "PPP ON" command.

This command is never rejected.

Please note that <u>this command does not de-activate the VPN Box functionality in a persistent way,</u> so if the device is restarted, the functionality is re-activated.

Example:

- \rightarrow VPN OFF
- ← VPN OFF EXECUTING

27.7. **VPN CNF**

This command can be used to change the value of the system configuration parameters related to the VPN Box functionality; the changes are persistent.

The command shall have the following format, where parameter values shall be separated by a blank character:

```
VPN CNF <Server> <Password> <Tag Name>
```

Please note that <u>all the parameters shall be present</u>, in the above order; no parameter can be <u>left</u> <u>empty.</u>

For the meaning of these parameters.

This command is rejected in the following case:

- if any of the command parameters is missing or invalid, the command will fail with the "Command parameter error".

- → VPN CNF myvpnbox.seneca.it myvpnbox zpass2-GSP
- ← VPN CNF EXECUTING

27.8. FWL ON

This command can be used to enable the "Mobile Network Firewall" in the system configuration (parameter "Mobile Network Firewall/Enable" = ON).

This command is never rejected.

Example:

- \rightarrow FWL ON
- ← FWL ON EXECUTING

27.9. **FWL OFF**

This command can be used to disable the "Mobile Network Firewall" in the system configuration (parameter "Mobile Network Firewall/Enable" = OFF).

This command is never rejected.

- → FWL OFF
- ← FWL OFF EXECUTING

27.10. **GET DIN**

This command can be used to get the status of one or all of the device digital inputs; if a digital input is not available (since it is used as an output)³, the "0" value is given.

The command can have two formats:

GET DIN<n> with <n>=1..N gets the status of a single digital input

where:

N=4 for R-PASS+R-COMM N=6 for Z-PASS2-RT-4G

GET DIN gets the status of all the digital inputs

This command is rejected in the following cases:

- if the digital I/O number in the command is out of range (e.g.: 0 or N+1), the command will fail with the "Command parameter error" error.

Examples:

- → GET DIN
- \leftarrow GET DIN EXECUTING (1,0,0,0)
- → GET DIN1
- \leftarrow GET DIN1 EXECUTING (1)
- → GET DIN2
- ← GET DIN2 EXECUTING (0)

27.11. **GET DOUT**

This command can be used to get the status of one or all of the device digital outputs; if a digital output is not available (since it is used as an input)⁴, the "0" value is given.

The command can have two formats:

GET DOUT<n> with <n>=1..N gets the status of a single digital output

where:

N=4 for R-PASS+R-COMM N=6 for Z-PASS2-RT-4G

GET DOUT gets the status of all the digital outputs

This command is rejected in the following cases:

³ This can be true for Z-PASS2-RT-4G.

⁴ This can be true for Z-PASS2-RT-4G.

- if the digital I/O number in the command is out of range (e.g.: 0 or N+1), the command will fail with the "Command parameter error" error.

Examples:

```
→ GET DOUT

← GET DOUT EXECUTING (0,1,0,0)

→ GET DOUT1

← GET DOUT1 EXECUTING (0)

→ GET DOUT2

← GET DOUT2 EXECUTING (1)
```

27.12. **SET DOUT**

This command can be used to set the status of one of the device digital outputs.

The command can have two formats:

```
SET DOUT<n>.CLOSE with <n>=1..N sets the digital output to the HIGH state SET DOUT<n>.OPEN with <n>=1..N sets the digital output to the LOW state where: N=4 for R-PASS+R-COMM N=6 for Z-PASS2-RT-4G
```

This command is rejected in the following cases:

- if the digital output is not configured as "General output" or the digital I/O is used as an input⁵, the command will fail with the "Digital I/O mode error" error;
- if the digital I/O number in the command is out of range (e.g.: 0 or N+1), the command will fail with the "Command parameter error" error;
- if the requested state is neither ".CLOSE", nor ".OPEN", the command will fail with the "Command parameter error" error.

Example:

```
→ SET DOUT2.CLOSE

← SET DOUT2.CLOSE EXECUTING
```

27.13. SET PULSE

This command can be used to generate a pulse on one of the device digital outputs.

The command can have two formats:

```
SET PULSE<n>.CLOSE <duration> with <n>=1..N
```

⁵ This can be true for Z-PASS2-RT-4G.

where:

N=4 for R-PASS+R-COMM

N=6 for Z-PASS2-RT-4G

to generate a LOW-HIGH-LOW pulse, with the HIGH state set for the number of seconds given by the <duration> parameter

SET PULSE<n>.OPEN <duration> with <n>=1..N

where:

N=4 for R-PASS+R-COMM

N=6 for Z-PASS2-RT-4G

to generate a HIGH-LOW-HIGH pulse, with the LOW state set for the number of seconds given by the <duration> parameter

This command is rejected in the following cases:

- if the digital output is not configured as "General output" or the digital I/O is used as an input⁶, the command will fail with the "Digital I/O mode error" error;
- if the digital I/O number in the command is out of range (e.g.: 0 or N+1), the command will fail with the "Command parameter error" error;
- if the requested state is neither ".CLOSE", nor ".OPEN", the command will fail with the "Command parameter error" error;
- if the <duration> parameter is missing or invalid, the command will fail with the "Command parameter error" error;
- if the ".CLOSE" parameter is given and the digital output is already in the HIGH state, the command will fail with the "No pulse generated" error;
- if the ".OPEN" parameter is given and the digital output is already in the LOW state, the command will fail with the "No pulse generated" error.

Example:

- SET PULSE2.CLOSE 10
- SET PULSE2.CLOSE 10 EXECUTING

27.14. **SET USER.PHONE**

This command can be used to enter a user with the specified telephone number, type and group list into the Phonebook; it can also be used to change the type and/or group list of an already existing user.

The command has the following format:

SET USER.PHONE +<number> <type> <group list>, with <type>=ADM|MGR|USR

Please note that the telephone number shall always be given in the "international format", so the initial '+' character shall always be present.

⁶ This can be true for Z-PASS2-RT-4G.

The "group list" is a list of non-negative integer numbers, separated by the "-" character, defining the groups which the user belongs to. Example of valid group lists are:

```
"1-2-3"
"1-4"
"1"
"0"
```

The "0" value means that the user is part of any group.

This command is rejected in the following cases:

- if the specified <number> already exists in the Phonebook, with the specified <type> and <group list>, the command will fail with the "Item already exists" error;
- if the <number> parameter is missing or invalid (including the case when the '+' character is missing), the command will fail with the "Command parameter error" error;
- if the <type> parameter is missing or invalid, the command will fail with the "Command parameter error" error;
- if the <group list> parameter is missing or invalid, the command will fail with the "Command parameter error" error.

Example:

```
→ SET USER.PHONE +390123456789 ADM 1-2-3

← SET USER.PHONE +390123456789 ADM 1-2-3 EXECUTING
```

27.15. RESET PHONE

This command can be used to delete a user with the specified telephone number from the Phonebook.

The command has the following format:

```
RESET PHONE +<number>
```

Please note that the telephone number shall always be given in the "international format", so the initial '+' character shall always be present.

This command is rejected in the following cases:

- if the specified <number > does not exist in the Phonebook, the command will fail with the "Item does not exist" error;
- if the <number> parameter is missing or invalid (including the case when the '+' character is missing), the command will fail with the "Command parameter error" error.

Example:

```
→ RESET PHONE +390123456789
← RESET PHONE +390123456789 EXECUTING
```

Please note that, if the Phonebook user with the specified telephone number also has an email address, this will be deleted by the command too.

27.16. SET USER.EMAIL

This command can be used to insert a user with the specified email address, type and group list into the Phonebook; it can also be used to change the type and/or group list of an already existing user.

The command has the following format:

```
SET USER.EMAIL <email address> <type> <group list>, with <type>=ADM|MGR|USR
```

The "group list" is a list of non-negative integer numbers, separated by the "-" character, defining the groups which the user belongs to. Example of valid group lists are:

```
"1-2-3"
"1-4"
"1"
"0"
```

The "0" value means that the user is part of any group.

This command is rejected in the following cases:

- if the specified <email address> already exists in the Phonebook, with the specified <type> and <group list>, the command will fail with the "Item already exists" error;
- if the <email address> parameter is missing or invalid, the command will fail with the "Command parameter error" error;
- if the <type> parameter is missing or invalid, the command will fail with the "Command parameter error" error;
- if the <group list> parameter is missing or invalid, the command will fail with the "Command parameter error" error.

Example:

```
→ SET USER.EMAIL admin@zpass.it ADM 1-2-3
← SET USER.EMAIL admin@zpass.it ADM 1-2-3 EXECUTING
```

27.17. RESET EMAIL

This command can be used to delete a user with the specified email address from the Phonebook.

The command has the following format:

```
RESET EMAIL <email address>
```

This command is rejected in the following cases:

if the specified <email address> does not exist in the Phonebook, the command will fail with the "Item does not exist" error;

- if the < email address > parameter is missing or invalid, the command will fail with the "Command parameter error" error.

Example:

- → RESET EMAIL admin@zpass.it
- ← RESET EMAIL admin@zpass.it EXECUTING

Please note that, if the Phonebook user with the specified email address also has a telephone number, this will be deleted by the command too.

27.18 **STATUS**

This command can be used to get some status information from the device.

The status info given in the response has the following format:

R-PASS+R-COMM:

Z-PASS2-RT-4G:

Z-PASS2-RT-4G<hwrev> <date> <time> RUNNING <service status>,<vpn status> <DIDO1>,<DIDO
2>,<DIDO3>,<DIDO4>,<DIDO5>,<DIDO6>

where:

<hwrev>: ""

<date> is in the form "yyyy/mm/dd"

<hour> is in the form "hh:mm:ss"

<service status> reports the status of the "SRV" LED7 ("OFF"|"ON"|"FAIL")

<vpn status> reports the status of the "VPN" LED ("OFF"|"ON"|"FAIL")

<DI1>,<DI2>,..., <DIDO5>,<DIDO6>, status ("LO"|"HI") of the digital I/Os

This command is never rejected.

- → STATUS
- ← STATUS EXECUTING (Z-PASS2-RT-4G 2018/03/09 08:01:31 RUNNING OFF, OFF HI, LO, HI, LO, LO, LO)

27.19. **GET GPS**

This command can be used to get GPS location info from the device.

The response is given as an URL to Google Maps™:

https://www.google.com/maps/?q=<latitude>,<longitude>

This command is rejected in the following cases:

- If the GPS signal is not available, the command will fail with the "GPS not fixed" error.

Example:

→ GET GPS

← GET GPS EXECUTING

(https://www.google.com/maps/?q=45.3742,11.94557)

27.20. **RESET**

This command can be used to restart ("reboot") the device.

This command is never rejected.

- → RESET
- ← RESET EXECUTING

27.21. **GET TAG**

This command can be used to get the value of a tag (see "Modbus Shared Memory Gateway" functionality). The command has the following format:

```
GET TAG <tag name>
```

Please note that the "tag name" is case-sensitive; also note that this command assumes that each tag has a distinct name; if more tags exist with the same name, this command returns the value of the first tag found with the given name.

The value is given in the response with the following format:

```
<tag value>, VALID
```

or:

<tag value>, INVALID

The "INVALID" status may occur for tags with "GATEWAY MODE"="GATEWAY", when the last Modbus read request has failed.

This command is rejected in the following cases:

- if no serial port has "Gateway Mode"="Modbus Shared Memory", the command will fail with the "Modbus Gateway not active" error;
- if no tag is found with the given name, the command will fail with the "Tag does not exist" error;
- if the requested tag has "GATEWAY MODE"="BRIDGE" and the Modbus read request fails, the command will fail with the "Tag operation failed" error.

Example:

- \rightarrow GET TAG GPS LONGITUDE
- ← GET TAG GPS LONGITUDE EXECUTING (11.94528, VALID)

27.22. **SET TAG**

This command can be used to set the value of a tag (see "Modbus Shared Memory Gateway" functionality). The command has the following format:

```
SET TAG <tag name> <tag value>
```

Please note that the "tag name" is case-sensitive; also note that this command assumes that each tag has a distinct name; if more tags exist with the same name, this command tries to set the value of the first tag found with the given name.

For non-integer tag values, the decimal point character '.' shall be used.

This command is rejected in the following cases:

- if no serial port has "Gateway Mode"="Modbus Shared Memory", the command will fail with the "Modbus Gateway not active" error;
- if no tag is found with the given name, the command will fail with the "Tag does not exist" error;
- if the given value does not fit the "Data Type" of the target tag (e.g. the "2" value for a "BOOL" tag), the command will fail with the "Invalid value for tag" error;
- if, for any reason, the write operation fails, the command will fail with the "Tag operation failed" error; this includes the following cases:
 - o the Modbus write request fails, for "GATEWAY" or "BRIDGE" tags;
 - the tag value cannot be changed, since it is not a "General output", for Digital I/Os ("EMBEDDED") tags;
 - o the tag value cannot be changed, since it is a "GPS info" ("EMBEDDED") tag.

Example:

- \rightarrow SET TAG ZPASS DO 10
- ← SET TAG ZPASS DO 10 EXECUTING

27.23. **OVPN ON**

This command can be used to activate the standard OPEN VPN functionality; the functionality is activated using system configuration parameters (Server, Password, Tag Name).

Please note that <u>this command does not activate the OPEN VPN functionality in a persistent way, so</u> if the device is restarted, the functionality is not re-activated.

Examples:

- → OVPN ON
- ← OVPN ON EXECUTING

27.24. **OVPN OFF**

This command can be used to deactivate the OPEN VPN functionality activated by a previous "OVPN ON" command

Please note that <u>this command does not de-activate the OPEN VPN functionality in a persistent way,</u> so if the Z-PASS is restarted, the functionality is re-activated.

- → OVPN OFF
- ← OVPN OFF EXECUTING

27.25. **CLEAN LOGS**

This command will delete all data logs.

- → CLEAN LOGS
- ← CLEAN LOGS EXECUTING

28. Z-NET4 (R-PASS-S, Z-TWS4-RT-S, Z-PASS2-RT-S ONLY)

When using Seneca PLCs with Modbus RTU I/O modules, a very useful and powerful tool is provided by the Z-NET4 program suite, running on Windows PCs.

Among other things, these programs allow you to:

- automatically add the I/O modules available on the bus;
- configure the PLC and I/O modules;
- automatically create a Straton project containing the I/O variables, with the Modbus tasks needed to acquire/control them and the variables corresponding to the I/Os present in the device;
- automatically generate the code for the Straton project, performing "Remote Control Functions", such as:

Data logging

Command and status SMS

Alarm generation

easily create custom web pages, with graphical widgets, and load them into the CPU

The Z-NET4 software is available at the following link:

http://www.seneca.it/products/z-net4

Please contact Seneca for further information on the Z-NET4 suite.