USER MANUAL

Z-4RTD2-SI

CONVERTER FOR THERMISTORS WITH 4 CHANNELS AND 24BIT ADC

SENECA S.r.I. Via Austria 26 – 35127 – Z.I. - PADOVA (PD) - ITALY Tel. +39.049.8705355 – 8705355 Fax +39 049.8706287 www.seneca.it

ORIGINAL INSTRUCTIONS

The content of this documentation refers to products and technologies described in it.

All technical data contained in the document may be changed without notice.

The content of this documentation is subject to periodic review.

To use the product safely and effectively, read the following instructions carefully before use.

The product must be used only for the use for which it was designed and manufactured: any other use is under the full responsibility of the user.

Installation, programming and set-up are allowed only to authorized, physically and intellectually suitable operators.

Set-up must be performed only after correct installation and the user must follow all the operations described in the installation manual carefully.

Seneca is not responsible for failures, breakages and accidents caused by ignorance or failure to apply the stated requirements.

Seneca is not responsible for any unauthorized modifications.

Seneca reserves the right to modify the device, for any commercial or construction requirement, without the obligation to promptly update the reference manuals.

No liability for the contents of this document can be accepted.

Use the concepts, examples and other content at your own risk.

There may be errors and inaccuracies in this document that could damage your system, so proceed with caution, the author(s) will not take responsibility for it.

Technical specifications are subject to change without notice.

CONTACT US	
Technical support	supporto@seneca.it
Product information	commerciale@seneca.it

This document is the property of SENECA srl. Copies and reproduction are prohibited unless authorised

Document revisions

DATE	REVISION	NOTES	AUTHOR
22/06/2022	0	First revision	ММ
10/10/2022	1	Added sampling rate changes for fw 1010 revision. Added info on float swapped registers Corrected errors in the Modbus register list	ММ
05/05/2023	2	Added USB port info Added info on Hardware revisions Added firmware update mode for HW revisions other than A	ММ

TABLE OF CONTENTS

1. INTRODUCTION
1.1. DESCRIPTION
1.2. COMMUNICATION PORT SPECIFICATIONS
2. TYPE OF SUPPORTED SENSORS
3. RESPONSE MEASURES AND TIMES7
3.1. SAMPLING TIMES AND MEASUREMENT UPDATE TIME
3.2. FILTER
3.3. MODBUS RESPONSE TIME
4. DEVICE CONFIGURATION9
5. USB CONNECTION AND CONFIGURATION RESET
6. FIRMWARE UPDATE9
6.1. HARDWARE REVISIONS
6.2. FIRMWARE UPDATE FOR HARDWARE REVISION "A"10
6.3. FIRMWARE UPDATE FOR HARDWARE REVISION "B" AND LATER
7. MODBUS COMMUNICATION PROTOCOL
7.1. SUPPORTED MODBUS FUNCTION CODES12
8. MODBUS REGISTER TABLE14
8.1. NUMBERING OF "0-BASED" OR "1-BASED" MODBUS ADDRESSES

8.2.	NUMBERING OF MODBUS ADDRESSES WITH "0-BASED" CONVENTION 15
8.3. (STA	NUMBERING OF MODBUS ADDRESSES WITH "1 BASED" CONVENTION NDARD)15
8.4.	BIT CONVENTION WITHIN A MODBUS HOLDING REGISTER16
8.5.	MSB AND LSB BYTE CONVENTION WITHIN A MODBUS HOLDING REGISTER 17
8.6. HOLI	REPRESENTATION OF A 32-BIT VALUE IN TWO CONSECUTIVE MODBUS DING REGISTERS
8.7.	32-BIT FLOATING POINT DATA (IEEE 754)18
8.8.	Z-4RTD2-SI: MODBUS 4X HOLDING REGISTER TABLE (FUNCTION CODE 3) 19

1. INTRODUCTION

ATTENTION!

This user manual extends the information from the installation manual to the configuration of the device. Use the installation manual for more information.

ATTENTION!

In any case, SENECA s.r.l. or its suppliers will not be responsible for the loss of data/revenue or consequential or incidental damages due to negligence or bad/improper management of the device, even if SENECA is well aware of these possible damages.

SENECA, its subsidiaries, affiliates, group companies, suppliers and distributors do not guarantee that the functions fully meet the customer's expectations or that the device, firmware and software should have no errors or operate continuously.

1.1. **DESCRIPTION**

Z-4RTD2-SI is a converter for thermistors with four independent and isolated measurement channels equipped with an analogue-digital converter with a 24-bit resolution.

The insulation relates to both the power supply and the RS485 communication port.

The device measures the value of the thermistors and makes them available through the RS485 port using the Modbus RTU protocol.

1.2. COMMUNICATION PORT SPECIFICATIONS

RS485 COMMUNICATION PORTS				
Number	1			
Baudrate	From 2400 to 115200 bit/s configurable			
Parity, Data bit, Stop bit	Configurable			
Protocol	Modbus RTU Slave			

USB COMMUNICATION PORT				
Number	1			
Protocol	Modbus RTU Slave			
Use	For configuration with Easy-setup software and firmware update			

2. TYPE OF SUPPORTED SENSORS

The supported sensors are:

SENSOR	STANDARD	MEASURING
		RANGE
PT100	EN 60751/A2 (ITS-90)	-200 ÷ +650°C
PT500	EN 60751/A2 (ITS-90)	-200 ÷ +750°C
PT1000	EN 60751/A2 (ITS-90)	-200 ÷ +210°C
NI100	DIN 43760	-60 ÷ +250°C
CU50	GOST 6651-2009	-180 ÷ +200°C
CU100	GOST 6651-2009	-180 ÷ +200°C
Ni120	DIN 43760	-60 ÷ +250°C
NI1000	DIN 43760	-60 ÷ +250°C

Each channel is independent, therefore it is also possible to use different sensors in the 4 channels.

3. RESPONSE MEASURES AND TIMES

3.1. SAMPLING TIMES AND MEASUREMENT UPDATE TIME

The sampling time is configurable from 25ms to 400ms per channel.

SAMPLING TIME PER
CHANNEL
25 ms
50 ms
100 ms
200 ms
400 ms

for example:

By activating 4 channels and setting a sampling time of 100ms on all, you get a measurement update every: 100*4 = 400 ms.

By activating 2 channels at 25 ms and 2 channels at 100 ms you get a measurement update every: 25*2 + 100*2 = 250 ms.

ATTENTION!

In order not to lose the settings, NEVER update the firmware with a version older than the one installed on the device.

3.2. *FILTER*

To each channel it is possible to insert a low pass filter to stabilize the measurement, it is a 10-sample moving average filter.

3.3. MODBUS RESPONSE TIME

Modbus Response Time: 5 ms (typical)

4. DEVICE CONFIGURATION

The device can be configured using the Easy Setup or Easy Setup 2 software, configurations are as follows:

SENSOR TYPE: allows you to select the type of sensor connected to the channel, it is also possible to disconnect the channel if it is not used.

UNIT OF MEASUREMENT: allows you to set whether the measurement must be in °C or in Ohm

3-WIRE MEASUREMENT: Allows you to set whether the sensor measurement will be carried out with 3 or 4 wires (for the 2-wire connection, refer to the 4-wire connection)

CHANNEL SPEED: Allows you to set the channel sampling time

IF CHARGE FAILURE: Allows you to replace (or not) the measured value with a temperature/resistance safety value set by the user in the event of a fault. The failure can be caused by:

- 1) Sensor beyond measurement values
- 2) Sensor breakage

ACTIVATE FILTER: Allows you to activate the filter on the selected channel, filtering allows you to obtain a slower but stable measurement.

INTERPRETATION OF FLOATING POINTS: It allows you to set whether the single precision (32 bit) Floating Point registers are to be interpreted with the most significant value on the high word or on the low word.

5. USB CONNECTION AND CONFIGURATION RESET

The front USB port allows a simple connection to configure the device via the configuration software. If it is necessary to restore the instrument's initial configuration, use the configuration software.

When a cable is connected to the USB port the RS485 port is disabled, to re-enable the RS485 port disconnect the USB cable.

6. FIRMWARE UPDATE

6.1. HARDWARE REVISIONS

It is possible to know the hardware revision of the device from the paper label printed on the side of the device. The label looks like this:

The hardware revision is located at the top right (in the example the product is a Z-4RTD2-SI hardware revision "B")

6.2. FIRMWARE UPDATE FOR HARDWARE REVISION "A"

In this hardware revision, the firmware update is done by pressing a hidden button.

To update the firmware:

- 1) Disconnect the device from the power supply;
- 2) Holding down the firmware update button (positioned as shown in the figure), reconnect the device to the power supply

- 3) Now the instrument is in update mode, stop pressing the update key and connect the USB cable to the PC
- 4) The device will be displayed in the PC as an "RP1-RP2" external unit

5) Copy the new firmware (uf2 extension) to the root of the "RP1-RP2" unit

- 6) Once the firmware file has been copied, the device will automatically reboot and be ready for use.
- 7) Verify that the fw update was successful by connecting the device to the Easy Setup software, the firmware revision (in this case 1002) is shown in the bottom left:

_		
1 9	Connesso a Z-4RTD2-SI FW:1002	IN

6.3. FIRMWARE UPDATE FOR HARDWARE REVISION "B" AND LATER

In this hardware revision, the firmware update it's done by moving dip switch 9 to the "ON" position:

To update the firmware:

- 1) Disconnect the device from the power supply;
- 2) Turn dip switch 9 to ON.
- 3) Now the device is in "firmware update" mode (the TX led stays on), connect the USB cable to the PC
- 4) Power up the device
- 5) The device will be displayed in the PC as an "RP1-RP2" external unit

∨ Dispos	itivi e unità (2)		
	Windows8_OS (C:)	RPI-RP2 (D:)	_
	64,8 GB disponibili su 464 GB	127 MB disponibili su 127 MB	

6) Copy the new firmware (uf2 extension) to the root of the "RP1-RP2" unit

User Manual

> a > firmware	🔤 🕑 📴 🖛	Gestisci RPI-R	IP2 (D:)		
	File Home Condividi Visualizza St	rumenti dischi			
Nome 24rtd2_fw1001.uf2	Aggiungiad Accesso rapido Appunti	Sposta Copia in * in * Organiz:	nina Rinomina za	Nuovo elemento • Accesso facilitato • Nuovo	Proprietă Apri ~
* >*	$\leftarrow \rightarrow \checkmark \uparrow$ a > Questo PC > RPI-RP2 (D:)	ٽ ~		D:)	
	🖹 Documenti 🖈 ^ Nome	^	Ultima modifica	Тіро	Dimensione
12_H	🖡 💿 INDEX.HTM		05/09/2008 16:20	Chrome HTML Do	1 KB
	📰 Immagini 💉 📄 INFO UF2.TXT		05/09/2008 16:20	Documento di testo	1 KB
	Windows8_0				
	Desktop				
	Easy Z 4RTD2 H				
ersor	7-4RTD2				
	70-KEV				
	Dropbox + Copia	in RPI-RP2 (D:)			
	OneDrive - Persor				
	💻 Questo PC				
	Desktop				

Once the firmware file has been copied, the device will automatically reboot

- 7) Remove power from the device
- 8) Turn dip switch 9 to OFF, the device is now in "normal operation" mode.
- 9) Power up the device
- 10) It is possible to check that the fw update was successful by connecting the device to the Easy Setup software, the firmware revision (in this case 1002) is shown in the bottom left

n J	Connesso a Z-4RTD2-SI FW:1002	IN

7. MODBUS COMMUNICATION PROTOCOL

The supported communication protocol is:

Modbus RTU Slave (from both the RS485 and USB ports)

For more information on these protocols, see the website: <u>http://www.modbus.org/specs.php</u>.

7.1. SUPPORTED MODBUS FUNCTION CODES

The following Modbus functions are supported:

- Read Holding Register (function 3)
- Write Single Register (function 6)
- Write Multiple registers (function 16)

ATTENTION!

All 32-bit values are contained in 2 consecutive registers

ATTENTION!

All 64-bit values are contained in 4 consecutive registers

ATTENTION!

Any registers with RW* (in flash memory) can be written up to about 10000 times The programmer must make sure the PLC/Master Modbus does not exceed this limit

8. MODBUS REGISTER TABLE

The following abbreviations are used in the register tables:

MS	Most Significant
LS	Least Significant
MSBIT	Most Significant Bit
LSBIT	Least Significant Bit
MMSW	"Most" Most Significant Word (16bit)
MSW	Most Significant Word (16bit)
LSW	Least Significant Word (16bit)
LLSW	"Least" Least Significant Word (16bit)
RO	Read Only
D\\/*	Read-Write: REGISTERS CONTAINED IN FLASH MEMORY: WRITABLE ABOUT
	10,000 TIMES MAXIMUM
D\\/**	Read-Write: REGISTERS THAT CAN BE WRITTEN ONLY AFTER WRITING THE
	COMMAND "ENABLE WRITE CUSTOM ENERGIES = 49616"
UNSIGNED 16 BIT	Unsigned integer register that can assume values from 0 to 65535
SIGNED 16 BIT	Signed integer register that can take values from -32768 to +32767
UNSIGNED 32 BIT	Unsigned integer register that can assume values from 0 to 4294967296
SIGNED 32 BIT	Signed integer register that can take values from -2147483648 to 2147483647
UNSIGNED 64 BIT	Unsigned integer register that can assume values from 0 to 18446744073709551615
SIGNED 64 BIT	Signed integer register that can assume values from -2^63 to 2^63-1
EL OAT 32 BIT	32-bit, single-precision floating-point register (IEEE 754)
	https://en.wikipedia.org/wiki/IEEE_754
BIT	Boolean register, which can take the values 0 (false) or 1 (true)

8.1. NUMBERING OF "0-BASED" OR "1-BASED" MODBUS ADDRESSES

According to the Modbus standard the Holding Registers are addressable from 0 to 65535, there are 2 different conventions for numbering the addresses: "0-BASED" and "1-BASED". For greater clarity, Seneca shows its register tables in both conventions.

CAREFULLY READ THE DOCUMENTATION OF THE MODBUS MASTER DEVICE IN ORDER TO UNDERSTAND WHICH OF THE TWO CONVENTIONS THE MANUFACTURER HAS DECIDED TO USE

8.2. NUMBERING OF MODBUS ADDRESSES WITH "0-BASED" CONVENTION

The numbering is:

HOLDING REGISTER MODBUS ADDRESS (OFFSET)	MEANING
0	FIRST REGISTER
1	SECOND REGISTER
2	THIRD REGISTER
3	FOURTH REGISTER
4	FIFTH REGISTER

Therefore, the first register is at address 0.

In the following tables, this convention is indicated with "ADDRESS OFFSET".

8.3. NUMBERING OF MODBUS ADDRESSES WITH "1 BASED" CONVENTION (STANDARD)

The numbering is that established by the Modbus consortium and is of the type:

HOLDING REGISTER MODBUS ADDRESS 4x	MEANING
40001	FIRST REGISTER
40002	SECOND REGISTER
40003	THIRD REGISTER
40004	FOURTH REGISTER
40005	FIFTH REGISTER

In the following tables this convention is indicated with "*ADDRESS 4x*" since a 4 is added to the address so that the first Modbus register is 40001.

A further convention is also possible where the number 4 is omitted in front of the register address:

HOLDING MODBUS ADDRESS WITHOUT 4x	MEANING
1	FIRST REGISTER
2	SECOND REGISTER
3	THIRD REGISTER
4	FOURTH REGISTER
5	FIFTH REGISTER

8.4. BIT CONVENTION WITHIN A MODBUS HOLDING REGISTER

A Modbus Holding Register consists of 16 bits with the following convention:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

For instance, if the value of the register in decimal is 12300

the value 12300 in hexadecimal is: 0x300C

the hexadecimal 0x300C in binary value is: 11 0000 0000 1100

So, using the above convention, we get:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |

8.5. MSB and LSB BYTE CONVENTION WITHIN A MODBUS HOLDING REGISTER

A Modbus Holding Register consists of 16 bits with the following convention:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

LSB Byte (Least Significant Byte) defines the 8 bits ranging from Bit 0 to Bit 7 included, we define MSB Byte (Most Significant Byte) the 8 bits ranging from Bit 8 to Bit 15 inclusive:

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BYTE MSB									•	BYTE	ELSB				

8.6. REPRESENTATION OF A 32-BIT VALUE IN TWO CONSECUTIVE MODBUS HOLDING REGISTERS

The representation of a 32-bit value in the Modbus Holding Registers is made using 2 consecutive Holding Registers (a Holding Register is a 16-bit register). To obtain the 32-bit value it is therefore necessary to read two consecutive registers:

For example, if register 40064 contains the 16 most significant bits (MSW) while register 40065 contains the least significant 16 bits (LSW), the 32-bit value is obtained by composing the 2 registers:

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
40064 MOST SIGNIFICANT WORD															

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					4006	5 LEA	ST SIG	NIFIC	ANT W	ORD					

 $Value_{32bit} = Register_{LSW} + (Register_{MSW} * 65536)$

In the reading registers it is possible to swap the most significant word with the least significant word, therefore it is possible to obtain 40064 as LSW and 40065 as MSW.

8.7. 32-BIT FLOATING POINT DATA (IEEE 754)

The IEEE 754 standard (<u>https://en.wikipedia.org/wiki/IEEE_754</u>) defines the format for representing floating point numbers.

As already mentioned, since it is a 32-bit data type, its representation occupies two 16-bit holding registers. To obtain a binary/hexadecimal conversion of a floating point value it is possible to refer to an online converter at this address:

http://www.h-schmidt.net/FloatConverter/IEEE754.html

			IEEE 754	4 Converter (JavaScript), V0.22	
	Sign	Exponent		Mantissa	
Value:	+1	2 ¹		1.2699999809265137	
Encoded as:	0	128		2264924	
Binary:					
	You er	ntered	2.54		
	Value	actually stored in float:	2.53999996	6185302734375	+1
	Error o	due to conversion:	-3.8146972	65625E-8	1
	Binary	Representation	01000000	01000101000111101011100	
	Hexad	lecimal Representation	0x40228f50	:	

Using the last representation the value 2.54 is represented at 32 bits as:

0x40228F5C

Since we have 16-bit registers available, the value must be divided into MSW and LSW:

0x4022 (16418 decimal) are the 16 most significant bits (MSW) while 0x8F5C (36700 decimal) are the 16 least significant bits (LSW).

8.8. Z-4RTD2-SI: MODBUS 4X HOLDING REGISTER TABLE (FUNCTION CODE 3)

ADDRESS (4x)	OFFSET	REGISTER	ORDER	CHANNEL	DESCRIPTION	R/ W	ТҮРЕ
40001	0	MACHINE IDENTIFICATION	-	-	Identification code	RO	UNSIGNED 16 BIT
40002	1	ERRORS			Bit[15] 1 = IN1 MEASURE OUT OF RANGE 0 = IN1 MEASURE OK Bit[14] 1 = IN2 MEASURE OUT OF RANGE 0 = IN2 MEASURE OK Bit[13] 1 = IN3 MEASURE OUT OF RANGE 0 = IN3 MEASURE OK Bit[12] 1 = IN4 MEASURE OUT OF RANGE 0 = IN4 MEASURE OK Bit[11] 1 = IN1 BURNOUT 0 = IN1 OK Bit[10] 1 = IN2 BURNOUT 0 = IN2 OK Bit[9] 1 = IN3 BURNOUT 0 = IN3 OK Bit[8] 1 = IN4 BURNOUT 0 = IN4 OK Bit[70] NOT USED	RO	UNSIGNED 16 BIT
40003	2	16 bit MEASURE	_	1	If Measure Type = "°C" unit measure is [°C/10] For example 2000 -> 200.0° C If Measure Type = "Ohm" unit measure is: for PT100/NI100/NI120/ CU50/CU100 [Ohm/100] (example	RO	SIGNED 16 BIT
ALL RIGHTS RE PUBLICATION MA PRIOR PERMISSIO	SERVED. NO P Y BE REPRODU	ART OF THIS ICED WITHOUT	a.it	MI00584-2-EN		Page 19	

ADDRESS (4x)	OFFSET	REGISTER	ORDER	CHANNEL	DESCRIPTION	R/ W	ТҮРЕ
					20000 -> 200.00 Ohm) for PT1000/PT500/NI100 0 [Ohm/10] (example 2000 -> 200.0 Ohm)		
40004	3	16 bit MEASURE	-	2	If Measure Type = "°C" unit measure is [°C/10] For example 2000 -> 200.0° C If Measure Type = "Ohm" unit measure is: for PT100/NI100/NI120/ CU50/CU100 [Ohm/100] (example 20000 -> 200.00 Ohm) for PT1000/PT500/NI100 0 [Ohm/10] (example 2000 -> 200.0 Ohm)	RO	SIGNED 16 BIT
40005	4	16 bit MEASURE	-	3	If Measure Type = "°C" unit measure is [°C/10] For example 2000 -> 200.0° C If Measure Type = "Ohm" unit measure is: for PT100/NI100/NI120/ CU50/CU100 [Ohm/100] (example 20000 -> 200.00 Ohm) for PT1000/PT500/NI100 0 [Ohm/10] (example 2000 -> 200.0 Ohm)	RO	SIGNED 16 BIT

ADDRESS (4x)	OFFSET	REGISTER	ORDER	CHANNEL	DESCRIPTION	R/ W	ТҮРЕ
40006	5	16 bit MEASURE	-	4	If Measure Type = "°C" unit measure is [°C/10] For example 2000 -> 200.0° C If Measure Type = "Ohm" unit measure is: for PT100/NI100/NI120/ CU50/CU100 [Ohm/100] (example 20000 -> 200.00 Ohm) for PT1000/PT500/NI100 0 [Ohm/10] (example 2000 -> 200.0 Ohm)	RO	SIGNED 16 BIT
40007 40008	6 7	FLOAT MEASURE	MSW LSW	1	Measure [°C] or [Ohm]	RO	FLOAT 32
40009	8	FLOAT MEASURE	MSW	2	Measure [°C] or	RO	FLOAT 32
40010	9 10		LSW		[Unm] Measure [°C] or		
40012	11	FLOAT MEASURE	LSW	3	[Ohm]	RO	FLOAT 32
40013 40014	12 13	FLOAT MEASURE	MSW LSW	4	Measure [°C] or [Ohm]	RO	FLOAT 32
40015	14	REVISION FIRMWARE	-	-	Firmware Revision	RO	UNSIGNED 16 BIT
40016	15	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT
40017	16	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT
40018	17	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT
40019	18	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT
40020	19	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT
40021	20	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT
40022	21	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT
40023	22	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT

ADDRESS (4x)	OFFSET	REGISTER	ORDER	CHANNEL	DESCRIPTION	R/ W	ТҮРЕ
40024	23	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT
40025	24	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT
40026	25	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT
40027	26	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT
40028	27	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT
40029	28	COMMAND REGISTER	-	-	Register for command execution (decimal): REBOOT=52428 SAVE CONFIGURATION = 51792 SAVE AND REBOOT = 49568	RO	UNSIGNED 16 BIT
40030	29	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT
40031	30	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT
40032	31	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT
40033	32	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT
40034	33	NOT USED	-	-	Not used	RO	UNSIGNED 16 BIT
40035	34	RS485 ADDRESS_PARITY	-	-	Bit[15:8] RS485 Modbus Station Address [1255] Bit[7:0] RS485 Parity : 0=no, 1=even, 2=odd	RW	UNSIGNED 16 BIT
40036	35	RS485 BAUDRATE	-	-	Bit[15:8] Baudrate: 0=4800 1=9600 2=19200 3=38400 4=57600 5=115200 6=1200 7=2400	RW	UNSIGNED 16 BIT

ADDRESS (4x)	OFFSET	REGISTER	ORDER	CHANNEL	DESCRIPTION	R/ W	ТҮРЕ
40037	36	INPUT CONFIGURATION	-	1	Bit[1512] Not Used Bit[11:9] Filter: O=not active 1=active Bit[8:6] RTD TYPE 0= PT100 1= NI100 2= PT500 3= PT1000 4= CU50 5= CU100 6= NI120 7= NI1000. Bit[5]: Measure Type 0= Temperature, 1= Resistance Bit[5]: Measure Type 0= Temperature, 1= Resistance Bit[2]: RTD Measure 0= RTD 2/4 wires 1= RTD 3 wires Bit[2:0] Channel Speed 0= disabled, 1= 25ms, 2= 50ms, 3= 100ms, 4= 200ms, 5= 400ms	RW	UNSIGNED 16 BIT
40038	37	INPUT CONFIGURATION	_	2	Bit[1512] Not Used Bit[11:9] Filter: O=not active 1=active Bit[8:6] RTD TYPE 0= PT100 1= NI100 2= PT500 3= PT1000 4= CU50 5= CU100 6= NI120 7= NI1000. Bit[5]: Measure Type 0= Temperature, 1= Resistance Bit[4]: RTD Measure 0= RTD 2/4 wires 1= RTD 3 wires Bit[2:0] Channel Speed 0= disabled, 1= 25ms, 2= 50ms, 3= 100ms, 4= 200ms, 5= 400ms	RW	UNSIGNED 16 BIT

ADDRESS (4x)	OFFSET	REGISTER	ORDER	CHANNEL	DESCRIPTION	R/ W	ТҮРЕ
40039	38	INPUT CONFIGURATION	_	3	Bit[1512] Not Used Bit[11:9] Filter: O=not active 1=active Bit[8:6] RTD TYPE 0= PT100 1= NI100 2= PT500 3= PT1000 4= CU50 5= CU100 6= NI120 7= NI1000. Bit[5]: Measure Type 0= Temperature, 1= Resistance Bit[5]: Measure Type 0= Temperature, 1= Resistance Bit[4]: RTD Measure 0= RTD 2/4 wires 1= RTD 3 wires Bit[2:0] Channel Speed 0= disabled, 1= 25ms, 2= 50ms, 3= 100ms, 4= 200ms, 5= 400ms	RW	UNSIGNED 16 BIT
40040	39	INPUT CONFIGURATION	_	4	Bit[1512] Not Used Bit[11:9] Filter: O=not active 1=active Bit[8:6] RTD TYPE 0= PT100 1= NI100 2= PT500 3= PT1000 4= CU50 5= CU100 6= NI120 7= NI1000. Bit[5]: Measure Type 0= Temperature, 1= Resistance Bit[4]: RTD Measure 0= RTD 2/4 wires 1= RTD 3 wires Bit[2:0] Channel Speed 0= disabled, 1= 25ms, 2= 50ms, 3= 100ms, 4= 200ms, 5= 400ms	RW	UNSIGNED 16 BIT

ADDRESS (4x)	OFFSET	REGISTER	ORDER	CHANNEL	DESCRIPTION	R/ W	ТҮРЕ
40041	40	CONFIGURATION2	-	-	Bit[15] Floating Point Representation 0= MSW FIRST 1= LSW FIRST Bit[144] NOT USED Bit[3] IN1 FAULT BEHAVIOUR 1 = LOAD FAIL VALUE 0 = KEEP LAST VALUE Bit[2] IN2 FAULT BEHAVIOUR 1 = LOAD FAIL VALUE 0 = KEEP LAST VALUE Bit[1] IN3 FAULT BEHAVIOUR 1 = LOAD FAIL VALUE 0 = KEEP LAST VALUE Bit[0] IN4 FAULT BEHAVIOUR 1 = LOAD FAIL VALUE 0 = KEEP LAST VALUE	RW	UNSIGNED 16 BIT
40042	41	MEASURE VALUE	-	1	Fault value to load [°C/10] or [°C/100] or [Ohm] if Fault Behaviour is configured in "Load fail value"	RW	SIGNED 16 BIT
40043	42	MEASURE VALUE	-	2	Fault value to load [°C/10] or [°C/100] or [Ohm] if Fault Behaviour is configured in "Load fail value"	RW	SIGNED 16 BIT
40044	43	MEASURE VALUE	-	3	Fault value to load [°C/10] or [°C/100] or [Ohm] if Fault Behaviour is configured in "Load fail value"	RW	SIGNED 16 BIT
40045	44	MEASURE VALUE	-	4	Fault value to load [°C/10] or [°C/100] or [Ohm] if Fault Behaviour is configured in "Load fail value"	RW	SIGNED 16 BIT
40133	132	OFFSET [°C / Ohm]	MSW	1		RW	FLOAT 32
ALL RIGHTS RE PUBLICATION MA PRIOR PERMISSIO	SERVED. NO P Y BE REPRODU	ART OF THIS ICED WITHOUT	ww.senec	a.it	MI00584-2-EN		Page 25

ADDRESS (4x)	OFFSET	REGISTER	ORDER	CHANNEL	DESCRIPTION	R/ W	ТҮРЕ
					Offset for the		
40134	133		LSW		measure channel		
					[°C/Ohm]		
40135	134	OFFSET [°C / Ohm]	MSW		Offset for the		
404.26	425			2	measure channel	RW	FLOAT 32
40136 135	135		LSVV	LSVV		[°C/Ohm]	
40137	136		MSW		Offset for the		
404.20	137 OFFSET [°C / Ohm] 3	137 OFFSET [°C / Ohm] L	3	measure channel	RW	FLOAT 32	
40138			LSW		[°C/Ohm]		
40139	138		MSW		Offset for the		
40140	139	OFFSET [°C / Ohm]	LSW	4	measure channel	RW	FLOAT 32
					[°C/Ohm]		

By adding the offset 1000 to the register it is possible to obtain 32-bit swapped values, for example the floating point current measurement register:

40007	6		MSW
40008	7	FLOAT MEASURE T	LSW

The same register is also located at 41007-41008 swapped

41007	1006		LSW
41008	1007	FLOAT MEASURE I SWAFFED	MSW