MANUALE UTENTE

T203PM100-MU T203PM300-MU T203PM600-MU

POWER METER MONOFASE AC/DC TRUE RMS
CON PROTOCOLLO MODBUS RTU ED USCITE ANALOGICA E DIGITALE

SENECA S.r.I.

Via Austria 26 – 35127 – Z.I. - PADOVA (PD) - ITALY Tel. +39.049.8705355 – 8705355 Fax +39 049.8706287

www.seneca.it

ORIGINAL INSTRUCTIONS

T203PM100-MU T203PM300-MU T203PM600-MU

Il contenuto della presente documentazione si riferisce a prodotti e tecnologie descritti in esso.

Tutti i dati tecnici contenuti nel documento possono essere modificati senza preavviso.

Il contenuto di questa documentazione è soggetto a revisione periodica.

Per utilizzare il prodotto in modo sicuro ed efficace, leggere attentamente le seguenti istruzioni prima dell'uso.

Il prodotto deve essere utilizzato solo per l'uso per cui è stato progettato e realizzato: qualsiasi altro uso è sotto piena responsabilità dell'utente.

L'installazione, la programmazione e il set-up sono consentiti solo agli operatori autorizzati, fisicamente e intellettualmente adatti.

Il set-up deve essere eseguito solo dopo una corretta installazione e l'utente deve seguire tutte le operazioni descritte nel manuale di installazione con attenzione.

Seneca non è responsabile per guasti, rotture e incidenti causati dall'ignoranza o dalla mancata applicazione dei requisiti indicati.

Seneca non è considerata responsabile per eventuali modifiche non autorizzate.

Seneca si riserva il diritto di modificare il dispositivo, per qualsiasi esigenza commerciale o di costruzione, senza l'obbligo di aggiornare tempestivamente i manuali di riferimento.

Nessuna responsabilità per il contenuto di questo documento può essere accettata.

Utilizzare i concetti, gli esempi e altri contenuti a proprio rischio.

Potrebbero esserci errori e imprecisioni in questo documento che potrebbero danneggiare il tuo sistema, procedere quindi con cautela, l'autore(i) non se ne assumono la responsabilità.

Le caratteristiche tecniche sono soggette a modifiche senza preavviso.

CONTACT US	
Technical support	supporto@seneca.it
Product information	commerciale@seneca.it

Questo documento è di proprietà di SENECA srl. La duplicazione e la riproduzione sono vietate, se non autorizzate

Document revisions

DATE	REVISION	NOTES	AUTHOR
07/04/2021	0	Prima revisione	ET, MM
25/06/2021	2	Added Energy Counter Pulse info	ET, MM
16/03/2023	3	Added USB/RS485 communication warning	MM

INDICE

1.	INTRODUZIONE	6
1.1.	DESCRIZIONE	6
1.2.	SPECIFICHE TECNICHE DELLE PORTE DI COMUNICAZIONE	7
2.	MISURE DISPONIBILI DA SERIALE	7
2.1.	CONVENZIONI	7
2.2.	VALORI ISTANTANEI FORNITI E VALORI MINIMI-MASSIMI ASSOLUTI	9
2.3.	CONTATORI ENERGIE ED IMPOSTAZIONI INIZIALI	10
3.	TEMPI DI MISURA E CALCOLO	11
3.1.	TEMPI DI CAMPIONAMENTO	11
3.2.	TEMPI DI RISPOSTA PER I VALORI RMS	11
3.3.	TEMPI DI RISPOSTA DELL'USCITA ANALOGICA E DEL MODBUS	11
4.	CONFIGURAZIONE DEL DISPOSITIVO	12
4. 1.	USCITA ANALOGICA E DIGITALE	13
4. 1.′	1. USCITA ANALOGICA	13
4.1.2	2. USCITA DIGITALE	14
5.	CONNESSIONE USB E RIPRISTINO DELLA CONFIGURAZIONE	14
6	AGGIORNAMENTO DEL FIRMWARE	15
7.	PROTOCOLLO DI COMUNICAZIONE MODBUS	16

7.1.	CODICI FUNZIONE MODBUS SUPPORTATI16
8. 1	AVOLA DEI REGISTRI MODBUS17
8.1.	NUMERAZIONE DEGLI INDIRIZZI MODBUS "0 BASED" O "1 BASED"18
8.2.	NUMERAZIONE DEGLI INDIRIZZI MODBUS CON CONVENZIONE "0 BASED" 18
	NUMERAZIONE DEGLI INDIRIZZI MODBUS CON CONVENZIONE "1 BASED" NDARD)18
	CONVENZIONE DEI BIT ALL'INTERNO DI UN REGISTRO MODBUS HOLDING ISTER19
	CONVENZIONE DEI BYTE MSB E LSB ALL'INTERNO DI UN REGISTRO BUS HOLDING REGISTER20
	RAPPRESENTAZIONE DI UN VALORE A 32 BIT IN DUE REGISTRI MODBUS DING REGISTER CONSECUTIVI20
8.7.	TIPI DI DATO FLOATING POINT A 32 BIT (IEEE 754)21
	T-203PM-MU: TAVOLA DEI REGISTRI MODBUS 4XHOLDING REGISTERS

1. INTRODUZIONE

Questo manuale utente estende le informazioni dal manuale di installazione sulla configurazione del dispositivo. Utilizzare il manuale di installazione per maggiori informazioni.

In ogni caso, SENECA s.r.l. o i suoi fornitori non saranno responsabili per la perdita di dati / incassi o per danni consequenziali o incidentali dovuti a negligenza o cattiva/impropria gestione del dispositivo, anche se SENECA è ben consapevole di questi possibili danni.

SENECA, le sue consociate, affiliate, società del gruppo, i suoi fornitori e rivenditori non garantiscono che le funzioni soddisfino pienamente le aspettative del cliente o che il dispositivo, il firmware e il software non debbano avere errori o funzionare continuativamente.

1.1. DESCRIZIONE

Lo strumento è un trasduttore per la misura di corrente e tensione AC/DC in modo isolato (isolamento relativo alle porte di comunicazione ed alle uscita analogica e digitale), finalizzato alla misura dell'energia (in modo bidirezionale) installabile su guida DIN 46277.

Modello	Descrizione	Protocolli di comunicazione
T203PM-MU	ModBUS 1PH Power Meter with	ModBUS RTU
	analog and digital output	

Lo strumento, tramite la misura della tensione e corrente di rete, permette di misurarne i valori RMS, le potenze istantanee e le energie degli apparati che si intendono monitorare.

La banda di misura di ingresso di 1.3kHz garantisce la misura di tensione e correnti con componenti armoniche fino alla ventunesima (alla frequenza di rete di 60 Hz).

L'utilizzo di questo dispositivo è compatibile con inverter monofase.

Di seguito viene fornito l'elenco delle misure rese disponibili dallo strumento:

- MISURA TENSIONE e CORRENTE TRUE RMS AC (A VERO VALORE EFFICACE)
- MISURA TENSIONE DC e MISURA CORRENTE DC BIPOLARE (la corrente potrà assumere i segni +/-)
- MISURE DI POTENZA ISTANTANEA ed ENERGIA ATTIVA, REATTIVA ED APPARENTE
- POWER FACTOR
- THD (A FREQUENZE DI RETE di 50 o 60 Hz)
- FREQUENZA DI RETE

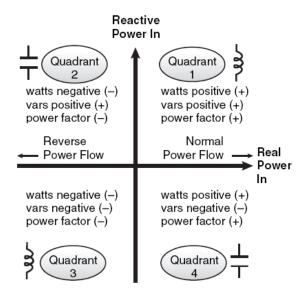
Le energie misurate sono salvate in memoria non volatile ciclicamente una volta al secondo.

Per ulteriori informazioni fare riferimento al paragrafo relativo ai CONTATORI ENERGIE.

1.2. SPECIFICHE TECNICHE DELLE PORTE DI COMUNICAZIONE

PORTE DI COMUNICAZIONE RS485		
Numero 1		
Baudrate Da 2400 a 115200 bit/s configurabili		
Parità ,Data bit, Stop Bit	Configurabili	
Protocollo	ModBUS RTU Slave	

PORTA DI COMUNICAZIONE USB		
Numero	1	
Protocollo	ModBUS RTU Slave	
Utilizzo	Per configurazione con software Easy-setup ed aggiorname	
	firmware	


Quando la porta USB è connessa ad un cavo la comunicazione sulla porta RS485 è bloccata.

Per ripristinare la comunicazione sulla porta RS485 è necessario scollegare fisicamente il cavo dalla porta USB.

2. MISURE DISPONIBILI DA SERIALE

2.1. CONVENZIONI

Il dispositivo fornisce i valori di misura delle potenze su tutti e 4 i quadranti. Le convenzioni per i segni delle misure utilizzate nel prodotto sono riassunte nella seguente immagine:

Dove:

T203PM100-MU T203PM300-MU T203PM600-MU

il quadrante Q1 è relativo ad un carico induttivo con energia attiva importata (assorbita) caso classico di utilizzo.

il quadrante Q2 è relativo ad un carico capacitivo con energia attiva esportata (generata).

il quadrante Q3 è relativo ad un carico induttivo con energia attiva esportata (generata).

il quadrante Q4 è relativo ad un carico capacitivo con energia attiva importata (assorbita).

2.2. VALORI ISTANTANEI FORNITI e VALORI MINIMI-MASSIMI ASSOLUTI

La seguente tabella fornisce l'elenco delle misure istantanee fornite dallo strumento; tutte le misura istantanee sono dotate di una memoria di minimo e massimo resettabile tramite comando ModBUS CLEAR MIN/MAX (fare riferimento al registro COMMAND nell'elenco dei registri)

Tensione	V
Corrente AC / DC (+/-)	1
Potenza Attiva (+/-)	P
Potenza Reattiva (+/-)	Q
Potenza Apparente (+/-)	S
Fattore di Potenza	PF
Frequenza	F (frequenza misurata sulla tensione di rete)
THD	% (misurata sulla corrente)

2.3. CONTATORI ENERGIE ed IMPOSTAZIONI INIZIALI

Nella tabella seguente si elencano i contatori interi a 64 bit i cui valori sono salvati in Fe-RAM (memoria scrivibile un numero di volte illimitato):

ENERGIA ATTIVA [Wh/10] (TOTALE (+/-))		
ENERGIA REATTIVA [VARh/10] (TOTALE (+/-))		
ENERGIA APPARENTE [VAh/10] (TOTALE (+/-))		

A tali contatori a 64 bit corrisponde il valore delle energie in valore Floating point a 32 bit come mostrato nella seguente tabella (fare riferimento alla tabella dei registri ModBUS a fine manuale):

MISURA	REGISTRO INTERO 64BIT	REGISTRO FLOAT32
ENERGIA ATTIVA	EN_INT_ACTIVE [Wh/10]	MISEN_F_ACTIVE [Wh]
ENERGIA REATTIVA	EN_INT_REACTIVE [VARh/10]	MISEN_F_REACTIVE [VARh]
ENERGIA APPARENTE	EN_INT_APPARENT [VAh/10]	MISEN_F_APPARENT [VAh]

Viene inoltre reso disponibile all'utente la possibilità di personalizzare i valori delle energie a 64 bit seguendo la seguente procedura che si avvale dell'invio di comandi ModBUS per sbloccare dapprima la protezione in scrittura e successivamente per poter finalizzare la scrittura in memoria non volatile:

- Nel registro COMMAND inviare il comando ENABLE WRITE CUSTOM ENERGIES
- Ora lo strumento non integra più le energie in memoria; è possibile quindi scrivere i valori iniziali desiderati nei registri interi a 64bit relativi alle energie ATTIVA / REATTIVA / APPARENTE
- A questo punto è possibile completare la scrittura tramite il comando ModBUS WRITE CUSTOM ENERGIES AND REBOOT.

Qualora invece si desideri solamente portare a zero i valori di tali contatori, eseguire il comando ModBUS CLEAR ENERGIES

Note:

- Durante il funzionamento normale, il salvataggio delle energie in memoria non volatile avviene una volta al secondo
- Nella personalizzazione delle energie, una volta disabilitata la protezione in scrittura non volatile il dispositivo può ritornare al normale funzionamento tramite i comandi ModBUS WRITE CUSTOM ENERGIES AND REBOOT o REBOOT.

3. TEMPI DI MISURA E CALCOLO

3.1. TEMPI DI CAMPIONAMENTO

Il tempo di campionamento dei canali di corrente e tensione è di 47000 campioni per secondo.

Il numero di bit equivalenti delle misure rilevate è di 13.5 bit

3.2. TEMPI DI RISPOSTA PER I VALORI RMS

Definiamo il tempo di assestamento (settling time) il tempo necessario al valore RMS per raggiungere il 99.5% del fondo scala in risposta ad un ingresso da 0% al 100% del fondo scala.

	Misure DC	Misure AC
Settling time	Max 500 ms	Max 1000 ms
Rise time	<250ms	<250ms
Fall time	<250ms	<250ms

3.3. TEMPI DI RISPOSTA DELL'USCITA ANALOGICA E DEL MODBUS

Analog Output Response Time: Typical 100ms (10-90%)

Modbus Response Time: Typical 5 ms

PRECISIONI DELLE MISURE A 23°C

Tipo di misura	Precisione a 23°C
Corrente RMS	1%
Tensione RMS	1%
Potenze/Energie	1%
THD	1%
Tensione uscita analogica	0.2% +0.05V

4. CONFIGURAZIONE DEL DISPOSITIVO

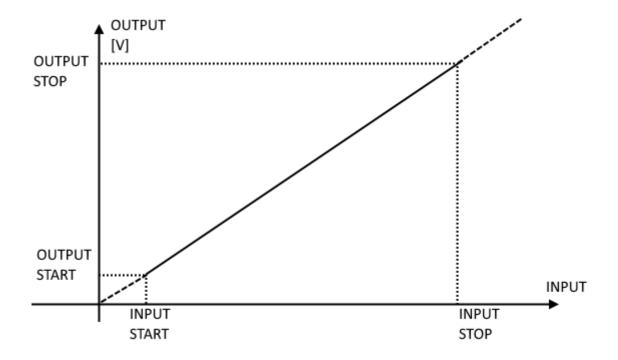
PER LA CONFIGURAZIONE DEL DISPOSITIVO USARE IL SOFTWARE EASY SETUP 2

Le misure fornite dal dispositivo sono soggette alle impostazioni utente. Di seguito viene elencato il significato dei registri di configurazione del dispositivo che agiscono sulle misure elettriche effettuate (fare riferimento ai registri ModBUS a fine manuale):

REGISTRO MODBUS	DESCRIZIONE	VALORE DI DEFAULT
USR_MULTV	Imposta il fattore di moltiplicazione di TV	1
USR_MULTI	Imposta il fattore di moltiplicazione di TA	1
USR_TVRATIO	Imposta il fattore di rapporto di TV	1
USR_AMPCUTOFF	Valore cut-off corrente (zero= disabilitato)	0
USR_VOLTCUTOFF	Valore cut-off corrente (zero= disabilitato)	0

4.1. USCITA ANALOGICA E DIGITALE

Le uscite analogica e digitale possono essere associate rispettivamente ad una delle misure istantanee fornite tra TENSIONE/ CORRENTE/ P.ATTIVA/ P.REATTIVA/ P.APPARENTE/ FREQUENZA/ PF/ THD.


Di seguito si vedono i dettagli di configurazione separatamente per l'uscita analogica e digitale.

4.1.1. Uscita analogica

L'uscita analogica è in grado di fornire una tensione nel range 0÷10V; la ripetizione analogica di una misura viene effettuata definendo :

- Un range della misura di ingresso (inizio e fine scala di misura)
- Un range della tensione di uscita a cui sarà associata la misura (Inizio e fine scala di uscita)

L'immagine sottostante illustra graficamente i valori quanto sopra descritto

REGISTRI MODBUS RELATIVI ALL'USCITA ANALOGICA											
REGISTRO MODBUS	DESCRIZIONE										
USR_ALARMTYPE_AODO	Seleziona il tipo di misura abbinabile [V,A,W,VAR,VA,Hz,PF,THD]										
USRRO_AO_OUTPUTVOLTAGE	Valore della tensione analogica generata all'uscita										
USR_AO_STARTINSCALE	Valore iniziale della misura da ripetere [V,A,W,VAR,VA,Hz,PF,THD]										
USR_AO_STOPINSCALE	Valore finale della misura da ripetere [V,A,W,VAR,VA,Hz,PF,THD]										
USR_AO_STARTVOLTOUT	Valore minimo della tensione di uscita associata all'inizio scala misura										
USR_AO_STOPVOLTOUT	Valore massimo della tensione di uscita associata alla fine scala misura										

4.1.2. Uscita digitale

L'uscita digitale viene utilizzata per la segnalazione di allarmi che si possono verificare per una data misura ad essa abbinata o per la generazione di impulsi relativi all'energia misurata(*).

Di seguito si fornisce una tabella con una descrizione sintetica dei campi necessari alla configurazione dell'uscita digitale:

REGISTR	II MODBUS RELATIVI ALL'USCITA DIGITALE
REGISTRO MODBUS	DESCRIZIONE
USR_ALARMTYPE_AODO	Seleziona il tipo di misura abbinabile [V,A,W,VAR,VA,Hz,PF,THD]
USR_ALARM_DO_BEHAVIOUR	Comportamento dell'allarme: NESSUNO / MAX / MIN / INSIDE
	WINDOW / OUTSIDE WINDOW / PULSES GENERATION: 1000 – 100
	- 10 - 1 PULSES/kWh, 100 - 10 -1 PULSES/MWh (*)
USR_DO_ALNORMALLYHIGH	Imposta uscita come normalmente alta o bassa
USR_DO_LOWVAL	Soglia di allarme minima della misura [V,A,W,VAR,VA,Hz,PF,THD]
USR_DO_HIGHVAL	Soglia di allarme massima della misura [V,A,W,VAR,VA,Hz,PF,THD]
USR_DO_HIST	Valore di isteresi delle soglie min/max [V,A,W,VAR,VA,Hz,PF,THD]
USR_DO_TIMER10MS	Tempo di permanenza nella situazione di allarme. L'allarme viene
	confermato al superamento di questo tempo (multipli di 10ms)
USRRO_DO_ALSTATUS	Segnalazione dell'allarme attuale: NESSUN ALLARME ,
	PREALLARME delle soglie MIN – MAX – INSIDE WINDOW -
	OUTSIDE WINDOW , ALLARME di MIN – MAX – INSIDE WINDOW –
	OUTSIDE WINDOW. (Per i valori numerici fare riferimento all' elenco
	dei registri ModBUS)

(*): la durata dell' impulso è di 50ms ± 10ms, la generazione degli impulsi è relativa all'energia attiva.

5. CONNESSIONE USB e RIPRISTINO DELLA CONFIGURAZIONE

La porta frontale USB consente una semplice connessione finalizzata alla configurazione del dispositivo tramite il software di configurazione.

Qualora si presenti la necessità di ripristinare la configurazione iniziale dello strumento utilizzare il software di configurazione.

Quando la porta USB è connessa ad un cavo la comunicazione sulla porta RS485 è bloccata.

Per ripristinare la comunicazione sulla porta RS485 è necessario scollegare fisicamente il cavo dalla porta USB.

6. AGGIORNAMENTO DEL FIRMWARE

Attraverso la porta USB è possibile fare l'aggiornamento del firmware (per ulteriori informazioni fare riferimento al software Easy Setup 2)

Quando la porta USB è connessa ad un cavo la comunicazione sulla porta RS485 è bloccata.

Per ripristinare la comunicazione sulla porta RS485 è necessario scollegare fisicamente il cavo dalla porta USB.

7. PROTOCOLLO DI COMUNICAZIONE MODBUS

Il protocollo di comunicazione supportato è:

ModBUS RTU Slave (sia dalla porta RS485 che dalla porta USB)

Quando la porta USB è connessa ad un cavo la comunicazione sulla porta RS485 è bloccata.

Per ripristinare la comunicazione sulla porta RS485 è necessario scollegare fisicamente il cavo dalla porta USB.

Per ulteriori informazioni su questi protocolli, consultare il sito Web: http://www.modbus.org/specs.php.

7.1. CODICI FUNZIONE MODBUS SUPPORTATI

Sono supportate le seguenti funzioni ModBUS:

Read Holding Register (function 3)
 Write Single Register (function 6)
 Write Multiple registers (function 16)

Tutti i valori a 32 bit sono contenuti in 2 registri consecutivi

Tutti i valori a 64 bit sono contenuti in 4 registri consecutivi

Eventuali registri con RW* (contenuti in memoria flash) possono essere scritti un massimo di circa 10000 volte

Deve essere cura del programmatore PLC / Master ModBUS non superare questo limite

8. TAVOLA DEI REGISTRI MODBUS

Nelle tavole dei registri sono usate le seguenti abbreviazioni:

MS	Most Significant
LS	Least Significant
MSBIT	Most Significant Bit
LSBIT	Least Significant Bit
MMSW	"Most" Most Significant Word (16bit)
MSW	Most Significant Word (16bit)
LSW	Least Significant Word (16bit)
LLSW	"Least" Least Significant Word (16bit)
RO	Read Only
RW*	Read-Write: REGISTRI CONTENUTI IN MEMORIA FLASH: SCRIVIBILI AL MASSIMO
KVV	CIRCA 10000 VOLTE
RW**	Read-Write: REGISTRI SCRIVIBILI SOLO DOPO LA SCRITTURA DEL COMANDO
INVV	"ENABLE WRITE CUSTOM ENERGIES=49616"
UNSIGNED 16 BIT	Registro intero senza segno che può assumere valori da 0 a 65535
SIGNED 16 BIT	Registro intero con segno che può assumere valori da -32768 a +32767
UNSIGNED 32 BIT	Registro intero senza segno che può assumere valori da 0 a 4294967296
SIGNED 32 BIT	Registro intero con segno che può assumere valori da -2147483648 a 2147483647
UNSIGNED 64 BIT	Registro intero senza segno che può assumere valori da 0 a
UNSIGNED 04 BIT	18.446.744.073.709.551.615
SIGNED 64 BIT	Registro intero con segno che può assumere valori da -2^63 a 2^63-1
FLOAT 32 BIT	Registro a virgola mobile a 32 bit, a precisione singola (IEEE 754)
I LOAT 32 BIT	https://en.wikipedia.org/wiki/IEEE_754
BIT	Registro booleano, che può assumere i valori 0 (false) o 1 (true)

8.1. NUMERAZIONE DEGLI INDIRIZZI MODBUS "0 BASED" O "1 BASED"

I registri Holding Register secondo lo standard ModBUS sono indirizzabili da 0 a 65535, esistono 2 diverse convenzioni per la numerazione degli indirizzi: la "0 BASED" e la "1 BASED".

Per maggiore chiarezza Seneca riporta le proprie tabelle dei registri in entrambe le convenzioni.

ATTENZIONE!

LEGGERE ATTENTAMENTE LA DOCUMENTAZIONE DEL DISPOSITIVO MASTER MODBUS AL FINE DI CAPIRE QUALE DELLE DUE CONVENZIONI IL COSTRUTTORE HA DECISO DI UTILIZZARE.

8.2. NUMERAZIONE DEGLI INDIRIZZI MODBUS CON CONVENZIONE "0 BASED"

La numerazione è del tipo:

INDIRIZZO MODBUS HOLDING REGISTER (OFFSET)	SIGNIFICATO
0	PRIMO REGISTRO
1	SECONDO REGISTRO
2	TERZO REGISTRO
3	QUARTO REGISTRO
4	QUINTO REGISTRO

Per cui il primo registro si trova all'indirizzo 0.

Nelle tabelle che seguono questa convenzione è indicata con "OFFSET INDIRIZZO".

8.3. NUMERAZIONE DEGLI INDIRIZZI MODBUS CON CONVENZIONE "1 BASED" (STANDARD)

La numerazione è quella stabilita dal consorzio Modbus ed è del tipo:

INDIRIZZO MODBUS HOLDING REGISTER 4x	SIGNIFICATO
40001	PRIMO REGISTRO
40002	SECONDO REGISTRO
40003	TERZO REGISTRO
40004	QUARTO REGISTRO
40005	QUINTO REGISTRO

Nelle tabelle che seguono questa convenzione è indicata con "INDIRIZZO 4x" poiché viene aggiunto un 4 all'indirizzo in modo che il primo registro ModBUS sia 40001.

E' anche possibile una ulteriore convenzione dove viene omesso il numero 4 davanti all'indirizzo del registro:

INDIRIZZO MODBUS HOLDING SENZA 4x	SIGNIFICATO
1	PRIMO REGISTRO
2	SECONDO REGISTRO
3	TERZO REGISTRO
4	QUARTO REGISTRO
5	QUINTO REGISTRO

8.4. CONVENZIONE DEI BIT ALL'INTERNO DI UN REGISTRO MODBUS HOLDING REGISTER

Un registro ModBUS Holding Register è composto da 16 bit con la seguente convenzione:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Ad esempio, se il valore del registro in decimale è

12300

il valore 12300 in esadecimale vale:

0x300C

l'esadecimale 0x300C in valore binario vale:

11 0000 0000 1100

Quindi, usando la convenzione di cui sopra otteniamo:

Ī	BIT															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ī	0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0

8.5. CONVENZIONE DEI BYTE MSB e LSB ALL'INTERNO DI UN REGISTRO MODBUS HOLDING REGISTER

Un registro ModBUS Holding Register è composto da 16 bit con la seguente convenzione:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Si definisce Byte LSB (Least Significant Byte) gli 8 bit che vanno da Bit 0 a Bit 7 compresi, si definisce Byte MSB (Most Significant Byte) gli 8 bit che vanno da Bit 8 a Bit 15 compresi:

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	/	6	5	4	3	2	1	U
	BYTE MSB										BYTE	ELSB			

8.6. RAPPRESENTAZIONE DI UN VALORE A 32 BIT IN DUE REGISTRI MODBUS HOLDING REGISTER CONSECUTIVI

La rappresentazione di un valore a 32 bit nei registri Holding Register in ModBUS è fatta utilizzando 2 registri consecutivi Holding Register (un registro Holding Register è da 16 bit). Per ottenere il valore a 32 bit è necessario leggere quindi due registri consecutivi:

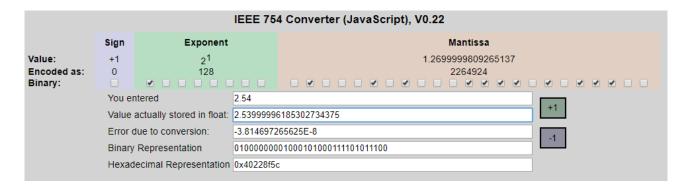
Ad esempio se il registro 40064 contiene i 16 bit più significativi (MSW) mentre il registro 40065 i 16 bit meno significativi (LSW) il valore a 32 bit si ottiene componendo i 2 registri:

Ī	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	40064 MOST SIGNIFICANT WORD															

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					4006	55 LEA	ST SIG	NIFICA	NT W	ORD					

$$Value_{32bit} = Register_{LSW} + (Register_{MSW} * 65536)$$

Nei registri di lettura è possibile scambiare il word più significativo con quello meno significativo quindi è possibile ottenere il 40064 come LSW e il 40065 come MSW.


8.7. TIPI DI DATO FLOATING POINT A 32 BIT (IEEE 754)

Lo standard IEEE 754 (https://en.wikipedia.org/wiki/IEEE_754) definisce il formato per la rappresentazione dei numeri in virgola mobile.

Come già detto poiché si tratta di un tipo dati a 32 bit la sua rappresentazione occupa due registri holding register da 16 bit.

Per ottenere una conversione binaria / esadecimale di un valore Floating point si può fare riferimento ad un convertitore online a questo indirizzo:

http://www.h-schmidt.net/FloatConverter/IEEE754.html

Utilizzando l'ultima rappresentazione il valore 2.54 è rappresentato a 32 bit come:

0x40228F5C

Poiché abbiamo a disposizione registri a 16 bit il valore va diviso in MSW e LSW:

0x4022 (16418 decimale) sono i 16 bit più significativi (MSW) mentre 0x8F5C (36700 decimale) sono i 16 bit meno significativi (LSW).

8.8. T-203PM-MU: TAVOLA DEI REGISTRI MODBUS 4xHOLDING REGISTERS (FUNCTION CODE 3)

ADDRESS (4x)	OFFSET	REGISTER		DESCRIPTION	W/R	TYPE
40001	0	RESERVED				UNSIGNED 16 BIT
40002	1	ROM_FWREV		Device firmware revision		UNSIGNED 16 BIT
40003	2	USR_SLAVEID		Device slave ID	RW*	UNSIGNED 16 BIT
40004	3	RESERVED			RO	UNSIGNED 16 BIT
40005	4	COMMAND		Register for command execution: REBOOT=49568 WRITE TO FLASH=49600 CLEAR ENERGIES=45505 CLEAR MIN/MAX=49612 ENABLE WRITE CUSTOM ENERGIES=49616 WRITE CUSTOM ENERGIES AND REBOOT=49617	RO	UNSIGNED 16 BIT
40072 40073	71 72	USR_MULTV	MSW LSW	Multiplier for voltage [> 0]	RW*	FLOAT 32 BIT
40074	73	USR_MULTI	MSW	Multiplier for current [> 0]	RW*	FLOAT 32 BIT
40075 40076	74 75	USR_TVRATIO	LSW MSW	Voltage transformation ratio [> 0]	RW*	FLOAT 32 BIT
40077	76	301(_1 110(110	LSW	voltage transformation ratio [* 0]	1000	1 20/11 02 511
40078 40079	77 78	USR_AMPCUTOFF	MSW LSW	current cutoff, 0 = disabled [A]	RW*	FLOAT 32 BIT
40073	79		MSW			
40080	80	USR_VOLTCUTOFF	LSW	voltage cutoff, 0 = disabled [V]	RW*	FLOAT 32 BIT
40082	81	USR_STOPBIT_PARITY_BAUDRATE	25.0	Bit [12] NR StopBit 0 = 1 stop bit 1 = 2 stop bit Bit [8-9] Parity 0=UART_PARITY_NONE 1=UART_PARITY_EVEN 2=UART_PARITY_ODD Bit [0-7] LSB Baudrate: 0=2400 1=4800 2=9600 3=19200 4=38400 5=57600 6=115200	RW*	UNSIGNED 16 BIT

40083	82	USR_MEASURE		Selects the type of measure (0=AC or 1=DC)	RW*	UNSIGNED 16 BIT
40084	83	USR_ALARMTYPE_AODO		Measure associated with the analog output AO (8 Bit MSB) and digital DO (8 Bit LSB). The selectable measures are: 0=NONE 1=VOLTAGE 2=CURRENT 3=ACTIVE P. 4=REACTIVE P. 5=APPARENT P. 6=FREQUENCY 7=PF 8=THD	RW*	UNSIGNED 16 BIT
40085	84	USR_ALARM_DO_BEHAVIOUR		Type of DO ALARMS: 0=NONE 1=MAX 2=MIN 3=INSIDE WINDOW 4=OUTSIDE WINDOW Pulses (PLS): 5=1000 PLS/kWh 6=100 PLS/kWh 7=10 PLS/kWh 8= 1 PLS/kWh 9=100 PLS/MWh 10=10 PLS/MWh 11=1 PLS/MWh	RW*	UNSIGNED 16 BIT
40086 40087	85 86	USR_AO_STARTINSCALE	MSW LSW	Analog output: initial value of the input [V, A, W, VAR, VA, Hz, PF, THD]	RW*	FLOAT 32 BIT
40088 40089	87 88	USR_AO_STOPINSCALE	MSW LSW	Analog output: final value of the input [V, A, W, VAR, VA, Hz, PF, THD]	RW*	FLOAT 32 BIT
40090 40091	89 90	USR_AO_STARTVOLTOUT	MSW LSW	Analog output: minimum voltage [V]	RW*	FLOAT 32 BIT
40092 40093	91 92	USR_AO_STOPVOLTOUT	MSW LSW	Analog output: maximum voltage [V]	RW*	FLOAT 32 BIT
40094 40095	93 94	USRRO_AO_OUTPUTVOLTAGE	MSW LSW	Analog output: voltage generated at the output [V]	RO	FLOAT 32 BIT
40096	95	USR_DO_ALNORMALLYHIGH		Digital output: alarm state, 1 = normally high 0 = normally low	RW*	UNSIGNED 16 BIT
40097	96 97	USR_DO_LOWVAL	MSW	Digital output: lower alarm threshold [V, A, W, VAR, VA, Hz, PF, THD]	RW*	FLOAT 32 BIT
40099	98	USR_DO_HIGHVAL	MSW	Digital output: upper alarm threshold [V, A, W, VAR, VA, Hz,	RW*	FLOAT 32 BIT
40100	99		LSW	PF, THD]	1144	T LOTTI OZ DIT
40101 40102	100 101	USR_DO_HIST	MSW LSW	Digital output: alarm hysteresis value [V, A, W, VAR, VA, Hz, PF, THD]	RW*	FLOAT 32 BIT
40103	102	USR_DO_TIMER10MS		Digital output: time filter applied to the alarm (multiples of 10ms)	RW*	UNSIGNED 16 BIT

40104	103	USRRO_DO_ALSTATUS		Digital output: alarm status. 0=NONE 1=MAX_PREALARM 2=MIN_PREALARM 4=INTWIN_PRE_ALARM 8=EXTWIN_PRE_ALARM 256=MAX_ALARM 512=MIN_ALARM 1024=INTWIN_ALARM 2048=EXTWIN_ALARM	RO	UNSIGNED 16 BIT
40105 40106	104 105	MISRMS_F_V	MSW LSW	RMS voltage measurement [V]	RO	FLOAT 32 BIT
40107	106	MISRMS_F_I	MSW	RMS current measurement [A]	RO	FLOAT 32 BIT
40108	107	WIIOTAWO_I _I	LSW	Timo current measurement [A]	NO	TEOM 32 BH
40109	108	MISPOW_F_ACTIVE	MSW	Active power measurement [W]	RO	FLOAT 32 BIT
40110	109		LSW			
40111	110 111	MISPOW_F_REACTIVE	MSW LSW	Reactive power measurement [VAR]	RO	FLOAT 32 BIT
40113	112	MIODOW E ADDADENT	MSW	Apparent power measurement	- DO	FLOAT OO DIT
40114	113	MISPOW_F_APPARENT	LSW	[VA]	RO	FLOAT 32 BIT
40115	114	MISEN_F_ACTIVE -	MSW	Active energy measurement [Wh]	RO	FLOAT 32 BIT
40116	115		LSW		1.0	
40117	116	MISEN_F_REACTIVE	MSW	Reactive energy measurement [VARh]	RO	FLOAT 32 BIT
40118	117	MIGEN_I_NEXTITE	LSW			
40119	118	MISEN_F_APPARENT	MSW	Apparent energy measurement	RO	FLOAT 32 BIT
40120	119	IMBERT, S. I. FARLERT	LSW	[VAh]	1.0	
40121	120	MISFREQ_F	MSW	Frequency measurement [Hz]	RO	FLOAT 32 BIT
40122	121	_	LSW	, ,		
40123	122	MISPF_F	MSW	PF measurement PF (±01)	RO	FLOAT 32 BIT
40124	123		LSW			
40125	124	MISTHD_F	MSW	THD measurement (0100%)	RO	FLOAT 32 BIT
40126	125		LSW	,		
40127	126	RESERVED				UNSIGNED 32 BIT
40128 40129	127 128	RESERVED				UNSIGNED 16 BIT
	129	NEOERVED				
40130 40131	130	RESERVED				FLOAT 32 BIT
40131	131					FLOAT 32 BIT
40133	132	RESERVED				I LOAT 02 DIT
40134	133	DEOEDVED				FLOAT 32 BIT
40135	134	RESERVED				
40136	135	RESERVED				FLOAT 32 BIT

40137	136					
40138	137	DECEDVED				ELOAT 22 DIT
40139	138	RESERVED				FLOAT 32 BIT
40140	139	MIN_MISRMS_F_V	MSW	Minimum RMS voltage	RO	FLOAT 32 BIT
40141	140	WIIN_IVIIOINWO_I _V	LSW	measurement [V]	RU	TEOM 32 BIT
40142	141	MAX_MISRMS_F_V	MSW	Maximum RMS voltage	RO	FLOAT 32 BIT
40143	142		LSW	measurement [V]		
40144	143	MIN MISRMS F I	MSW	Minimum RMS current	RO	FLOAT 32 BIT
40145	144		LSW	measurement [A]		
40146	145	MAX MISRMS F I	MSW	Maximum RMS current	RO	FLOAT 32 BIT
40147 40148	146 147		LSW MSW	measurement [A]		
40149	147	MIN_MISPOW_F_ACTIVE	LSW	Minimum active power measurement [W]	RO	FLOAT 32 BIT
40150	149		MSW	Maximum active power		
40151	150	MAX_MISPOW_F_ACTIVE	LSW	measurement [W]	RO	FLOAT 32 BIT
40152	151		MSW	Minimum reactive power		
40153	152	MIN_MISPOW_F_REACTIVE	LSW	measurement [VAR]	RO	FLOAT 32 BIT
40154	153	MAX_MISPOW_F_REACTIVE	MSW	Maximum reactive power measurement [VAR]	RO	
40155	154		LSW			FLOAT 32 BIT
40156	155		MSW	Minimum apparent power measurement [VA]		
		MIN_MISPOW_F_APPARENT			RO	FLOAT 32 BIT
40157	156		LSW			
40158	157	MAX_MISPOW_F_APPARENT	MSW	Minimum apparent power	RO	FLOAT 32 BIT
40159	158		LSW	measurement [VA]		
40160	159	MIN_MISFREQ_F	MSW	Minimum frequency	RO	FLOAT 32 BIT
40161	160		LSW	measurement [Hz]		
40162	161	MAX_MISFREQ_F	MSW	Maximum frequency	RO	FLOAT 32 BIT
40163	162	W/V_WIOTTLEQ_I	LSW	measurement [Hz]	110	. 20/ 11/02/21/2
40164	163	MIN_MISPF_F	MSW	Minimum PF measurement	RO	FLOAT 32 BIT
40165	164		LSW	(±01)	1,0	
40166	165	MAX_MISPF_F	MSW	Maximum PF measurement (±01)	RO	FLOAT 32 BIT
40167	166		LSW			
40168	167	MIN_MISTHD_F	MSW	Minimum THD measurement	RO	FLOAT 32 BIT
40169	168		LSW	(0100%)		
40170	169	MAX_MISTHD_F	MSW	Maximum THD measurement	RO	FLOAT 32 BIT
40171	170		LSW	(0100%)	110	LLOAT 92 BIT
40172	171	DE0ED\/ED	MSW			LINOIONED CO DIT
40173	172	RESERVED	LSW			UNSIGNED 32 BIT

40174	173	MISRMS_INT_V		RMS voltage measurement [V / 10]: (Example: 2300 -> 230.0 V)	RO	SIGNED 16 BIT
40175	174	MISRMS_INT_I		RMS current measurement [A/10]: (Example: 1000 -> 100.0 A)	RO	SIGNED 16 BIT
40176	175	MODOW NIT ACTIVE	MSW	Active power measurement		
40177	176	MISPOW_INT_ACTIVE	LSW	[W/10]: (Example 1000 -> 100.0 W)	RO	SIGNED 32 BIT
40178	177		MSW	Reactive power measurement		
40179	178	MISPOW_INT_REACTIVE	LSW	[VAR/10]: (Example 1000 -> 100.0 VAR)	RO	SIGNED 32 BIT
40180	179	MICROW INT APPARENT	MSW	Apparent power measurement	DO.	OLONED OO DIT
40181	180	MISPOW_INT_APPARENT	LSW	[VA/10]: (Example 1000 -> 100.0 VA)	RO	SIGNED 32 BIT
40182	181		MMSW			
40183	182	EN_INT_ACTIVE	MSW	Active energy measurement [Wh/10]: (Example 1000 -> 100.0	RW**	UNSIGNED 64 BIT
40184	183	EN_INT_ACTIVE	LSW	Wh)	KVV	ONOIONED OF DIT
40185	184		LLSW			
40186	185		MMSW			
40187	186	EN_INT_REACTIVE	MSW	Reactive energy measurement [VARh/10]: (Example 1000 -> 100.0 VARh)	RW**	UNSIGNED 64 BIT
40188	187		LSW		KVV	UNSIGNED 04 BIT
40189	188		LLSW	·		
40190	189		MMSW	Apparent energy measurement		
40191	190		MSW	[VAh/10]: (Example 1000 -> 100.0 VAh)	RW**	UNSIGNED 64 BIT
40192	191	EN_INT_APPARENT	LSW			
40193	192		LLSW			
40194	193	MIS_INT_FREQ		Frequency measurement [Hz/10]: (Example 500 -> 50.0 Hz)	RO	UNSIGNED 16 BIT
40195	194	MIS_INT_PF		PF measurement [±01000]: (Example 755 -> 0.755)	RO	SIGNED 16 BIT
40196	195	MIS_INT_THD		THD measurement [0100% / 10]: (Example 800 -> 80%)	RO	SIGNED 16 BIT
40197	196	MIN_MISRMS_INT_V		Minimum RMS voltage measurement [V/10]: (Example 2300 -> 230.0 V)	RO	SIGNED 16 BIT
40198	197	MAX_MISRMS_INT_V		Maximum RMS voltage measurement [V/10]: (Example 2300 -> 230.0 V)	RO	SIGNED 16 BIT
40199	198	MIN_MISRMS_INT_I		Minimum RMS current measurement [A/10]: (Example 1000 -> 100.0 A)	RO	SIGNED 16 BIT
40200	199	MAX_MISRMS_INT_I		Maximum RMS current measurement [A/10]: (Example 1000 -> 100.0 A)	RO	SIGNED 16 BIT
40201	200	MIN_MISPOW_INT_ACTIVE	MSW	,	RO	SIGNED 32 BIT

40202	201		LSW	Minimum active power measurement [W/10]: (Example 1000 -> 100.0 W)		
40203	202	MAX_MISPOW_INT_ACTIVE	MSW	Maximum active power	RO	
40204	203		LSW	measurement [W/10]: (Example 1000 -> 100.0 W)		SIGNED 32 BIT
40205	204	MIN MISPOW INT REACTIVE	MSW	Minimum reactive power measurement [VAR/10]:	RO	SIGNED 32 BIT
40206	205	WIIN_WIISPOW_IINT_REACTIVE	LSW	(Example 1000 -> 100.0 VAR)	KO	SIGNED 32 DIT
40207	206	MAY MODOW INT. DEACTIVE	MSW	Maximum reactive power	- DO	0.00.50
40208	207	MAX_MISPOW_INT_REACTIVE	LSW	measurement [VAR/10]: (Example 1000 -> 100.0 VAR)	RO	SIGNED 32 BIT
40209	208	MIN_MISPOW_INT_APPARENT	MSW	Minimum apparent power	RO	SIGNED 32 BIT
40210	209		LSW	measurement [VA/10]: (Example 1000 -> 100.0 VA)	RU	
40211	210	MAX_MISPOW_INT_APPARENT	MSW	Maximum apparent power measurement [VA/10]: (Example 1000 -> 100.0 VA)	RO	SIGNED 32 BIT
40212	211		LSW			
40213	212	MIN_MIS_INT_FREQ		Minimum frequency measurement [Hz/10]: (Example 500 -> 50.0 Hz)	RO	SIGNED 16 BIT
40214	213	MAX_MIS_INT_FREQ		Maximum frequency measurement [Hz/10]: (Example 500 -> 50.0 Hz)	RO	SIGNED 16 BIT
40215	214	MIN_MIS_INT_PF		Minimum PF measurement [±01000]: (Example 755 -> 0.755)	RO	SIGNED 16 BIT
40216	215	MAX_MIS_INT_PF		Maximum PF measurement [±01000]: (Example 755 -> 0.755)	RO	SIGNED 16 BIT
40217	216	MIN_MIS_INT_THD		Minimum THD/10 measurement (0100%): (Example 800 -> 80.0%)	RO	SIGNED 16 BIT
40218	217	MAX_MIS_INT_THD		Maximum THD/10 measurement (0100%): (Example 800 -> 80.0%)	RO	SIGNED 16 BIT

Aggiungendo l'offset 1000 al registro è possibile ottenere I valori a 32 bit swapped, per esempio il registro della misura di corrente in floating point:

40107	106	MISRMS F I	MSW	Current measurement	RO	FLOAT 32 BIT
40108	107	WIISKWIS_F_I	LSW	RMS [A]	KU	FLUAT 32 BIT

Lo stesso registro si trova anche all'indirizzo 41107-41108 swapped:

41107	1106	MISRMS F I	LSW	Current measurement	PΩ	FLOAT 32 BIT
41108	1107	WIISKWS_F_I	MSW	RMS [A]	KU	FLOAT 32 BIT