MANUALE UTENTE R-KEY-LT

1-PORT MODBUS RTU/ASCII GATEWAY

CE

SENECA S.r.I. Via Austria 26 – 35127 – Z.I. - PADOVA (PD) - ITALIA Tel. +39.049.8705355 – 8705355 Fax +39 049.8706287 www.seneca.it

ISTRUZIONI ORIGINALI

Introduzione

L'indice degli argomenti nel presente documento si riferisce ai prodotti e alle tecnologie in esso descritti.

Tutti i dati tecnici contenuti nel documento possono essere modificati senza preavviso.

Il contenuto del presente documento è soggetto a revisione periodica.

Per utilizzare il prodotto in modo efficace e sicuro, leggere attentamente le seguenti istruzioni prima dell'uso.

Utilizzare il prodotto esclusivamente per l'uso al quale è stato destinato e concepito: qualsiasi altro uso è soggetto alla completa responsabilità dell'utente.

L'installazione, la programmazione e la configurazione sono consentite esclusivamente a operatori autorizzati e qualificati da un punto di vista fisico e intellettuale.

La configurazione deve essere eseguita solo dopo una corretta installazione e l'utente è tenuto a effettuare correttamente ogni singola operazione descritta nel manuale di installazione.

Seneca non sarà considerata responsabile per guasti, avarie, incidenti causati da mancata conoscenza o mancata applicazione dei requisiti indicati.

Seneca non sarà considerata responsabile per qualsivoglia modifica non autorizzata.

Seneca si riserva il diritto di modificare il dispositivo, per qualsiasi esigenza commerciale o costruttiva, senza l'obbligo di aggiornare tempestivamente i manuali di riferimento.

Non si accettano responsabilità per il contenuto del presente documento.

L'utilizzo di nozioni, esempi e altro contenuto da parte dell'utente è a rischio di quest'ultimo.

Nel documento potrebbero essere presenti errori e imprecisioni che potrebbero causare danni al sistema dell'utente.

Di conseguenza procedere con cautela in quanto, sebbene questa condizione sia altamente improbabile, l'autore o gli autori non se ne assumono alcuna responsabilità.

Le caratteristiche tecniche sono soggette a modifica senza preavviso.

CONTAITI	
Supporto tocnico	support@seneca.it (Tutti i paesi)
	supporto@seneca.it (Italia)
Informazioni prodotto	sales@seneca.it (Tutti i paesi)
	commerciale@seneca.it (Italia)

Revisioni documento

DATA	REVISIONE	NOTE
20/09/2017	1.0.0.0	Prima revisione
15/11/2017	1.0.0.1	Capitolo fisso 1 Capitolo fisso 7
06/12/2017	1.0.0.2	E-mail Informazioni prodotto e Supporto fisso
25/01/2020	3	Eliminare le parti comuni tra manuali utente e installazione

Il presente documento è di proprietà di SENECA srl. Qualsiasi duplicazione e riproduzione è vietata se non autorizzata.

INDICE

1.	DESCRIZIONE	.6
1.1.	DA MODBUS ETHERNET A SERIALE	6
1	1.1. COME FUNZIONA	7
1.2.	DA MODBUS SERIALE A ETHERNET	7
1	2.1. COME FUNZIONA	8
2.	CONFIGURAZIONE PREDEFINITA	.8
3.	CONFIGURAZIONE DEL DISPOSITIVO	.9
3.1.	PRIMO ACCESSO AL WEB SERVER CON UN SERVER DHCP	9
3.2.	PRIMO ACCESSO AL WEB SERVER SENZA UN SERVER DHCP	.11
3.3.	CONSIGLI PER CONFIGURARE L'IP PER PIÙ DISPOSITIVI R-KEY-LT	.13
3.4.	CONFIGURAZIONE DIP SWITCH SW1 E SW2	.14
3.5.	CONFIGURAZIONE WEB SERVER	.14
3.6.	SALVARE O CARICARE UNA CONFIGURAZIONE	.20
4.	MONITOR TRAFFICO	21
5.	AGGIORNAMENTO FIRMWARE	22
6.	ESTENDERE RS485 IN ETHERNET: DA MODBUS SERIALE A ETHERNET E P	01
DA	ETHERNET A SERIALE	23
7.	GLOSSARIO	24

ATTENZIONE!

Il presente Manuale utente estende le informazioni del Manuale di installazione sulla configurazione del dispositivo. Per maggiori informazioni, utilizzare il Manuale di installazione.

ATTENZIONE!

SENECA s.r.l. o i suoi fornitori non saranno in alcun caso responsabili per perdita di dati di registrazione/redditi o per danni indiretti o incidentali dovuti a negligenza o uso scorretto e improprio del dispositivo, sebbene SENECA sia ben consapevole di questi possibili danni. SENECA, le sue controllate e affiliate, le società del gruppo, i suoi fornitori e i dettaglianti non garantiscono che le funzioni saranno tali da soddisfare pienamente le aspettative del cliente o che il dispositivo, il firmware e il software non presenteranno errori o che avranno un funzionamento continuativo.

1. **DESCRIZIONE**

R-KEY-LT è un gateway Modbus RTU/ASCII con porta RS232/RS485 e Fast Ethernet 100MBit.

È disponibile anche un Web server interno per la configurazione e il monitoraggio traffico in tempo reale.

R-KEY-LT è configurabile in 2 diverse modalità:

- da Modbus Ethernet a Seriale (da Modbus TCP-IP a Modbus RTU/ASCII)
- da Modbus seriale a Ethernet (da Modbus RTU/ASCII a Modbus TCP-IP)

1.1. DA MODBUS ETHERNET A SERIALE

In questo scenario, un Modbus TCP-IP master è collegato via ethernet all'R-KEY-LT e uno o più slave Modbus (ad esempio, Serie Z-PC Seneca) sono connessi alla porta seriale.

In questa figura è rappresentata una tipica connessione LAN:

Inoltre, è possibile una comunicazione con più client (max 8 client per il dispositivo):

1.1.1. COME FUNZIONA

La modalità da Modbus ethernet a seriale è il modo più semplice per comunicare con gli slave Modbus RTU/ASCII attraverso una connessione ethernet.

Non è necessario configurare quali registri richiedere poiché la conversione da Ethernet a seriale viene eseguita in tempo reale.

È necessario eseguire solo la configurazione seriale (baud rate, parità ecc...).

Il Modbus TCP-IP Master (client) richiede un registro modbus via ethernet, quindi R-KEY-LT converte la richiesta allo slave Modbus seriale; la risposta dello slave Modbus seriale viene anche ritradotta in Modbus TCP al Master.

1.2. DA MODBUS SERIALE A ETHERNET

In questo scenario, un Modbus master seriale deve essere collegato a uno o più server Modbus TCP-IP. Il Modbus master seriale è collegato con la porta seriale all'R-KEY-LT, uno o più server Modbus TCP-IP sono collegati alla porta ethernet:

1.2.1. COME FUNZIONA

La modalità da Modbus seriale a ethernet rappresenta il modo più semplice per creare una comunicazione tra un dispositivo Modbus master seriale e uno o più server Modbus Ethernet TCP-IP.

Non è necessario configurare quali registri richiedere poiché la conversione da seriale a Ethernet viene eseguita in tempo reale.

È necessario eseguire solo la configurazione seriale (baud rate, parità ecc...) e la serie di indirizzi della stazione modbus del server (poiché un server può gestire più indirizzi stazione).

Il Modbus master seriale richiede un registro dalla porta RS232/RS485, quindi l'R-KEY-LT converte la richiesta al server Modbus TCP-IP; la risposta del server Modbus TCP-IP viene ritradotta anche in Modbus seriale al Master.

2. CONFIGURAZIONE PREDEFINITA

La configurazione predefinita è: IP: modalità DHCP Modalità: da Modbus Ethernet a Modbus RTU Seriale: baud rate 38400,8bit, nessuna parità,1 bit di stop

3. CONFIGURAZIONE DEL DISPOSITIVO

La configurazione tramite dip-switch è attiva solo dopo un riavvio!

Per riavviare il dispositivo, è possibile spegnere/accendere l'alimentazione o premere il pulsante "Reset" fino ad illuminare tutti i led (ON) (circa 5 secondi).

3.1. PRIMO ACCESSO AL WEB SERVER CON UN SERVER DHCP

- 1) Spegnere (OFF) I'R-KEY-LT
- Forzare l'esecuzione della flash alla configurazione di fabbrica tramite impostazione dell'SW2: DIP 1 ON
 - DIP 2 ON

Questo andrà a modificare l'ultima configurazione alle impostazioni di fabbrica (con l'IP impostato su DHCP, accesso web server su admin/admin).

- 3) Accendere (ON) I'R-KEY-LT
- Impostare l'utilizzo della configurazione della flash tramite impostazione dell'SW2: DIP 1 OFF DIP 2 OFF
- 5) Scaricare qui <u>http://www.seneca.it/products/r-key-lt</u>lo strumento Seneca Discovery Device, quindi installarlo.
- 6) Lanciare lo strumento Seneca Discovery Device e fare clic sul pulsante "Search" per visualizzare l'elenco dei dispositivi Seneca. A questo punto, selezionare il dispositivo R-KEY-LT:

😸 Seneo	a Device Discovery	- rev. 2.1.4.0							-		×
<u>F</u> ile											
Devices	found										
#	IP	Mode	MAC	Ping	Name	Hostname	Firmware	CRC	Commands		
()	192.168.90.101	STATIC		Different Subnet	Z-MINIRTU	192.168.90.101	106.0	OK			
	192.168.85.8	STATIC		2 ms	Z-KEY	192.168.85.8	112.0	OK	Assign		
	192.168.212.24	STATIC		Different Subnet	Z-KEY	192.168.212.24	112.0	OK	Assign		
()	192.168.85.211	STATIC		2 ms	Z-KEY	192.168.85.211	112.0	OK	Assign		
	192.168.85.168	DHCP		1 ms 🤇	R-KEY-LT	192.168.85.168	101.0	OK	Assign		
(192.168.85.7	STATIC		4 ms	Z-PASS	192.168.85.7	3900.122	ОК			
()	192.168.85.200	STATIC		10 ms	Z-TWS4	ZTWS4	2940.220	OK			
()	192.168.84.192	STATIC		11 ms	Z-TWS4	ZTWS4	2940.312	OK	Assign		
()	192.168.85.104	STATIC		9 ms	Z-PASS2-S	ZPASS2S	2940.331	ОК	Assign		
⊕	192.168.84.156	STATIC		1 ms	Cloud BOX	192.168.84.156	7800.110	OK			
⊕	192.168.85.6	STATIC		4 ms	Z-PASS2-S	pc-demo.seneca	2940.330	OK	Assign		
⊕	192.168.85.178	STATIC		1 ms	VPN Box	vpnbox.seneca-p	1.0	ОК	Assign		
()	192.168.84.155	STATIC		1 ms	Cloud BOX	cloudbox.seneca	7800.110	OK			
Found	13 devices										
_										Search	

7) Se occorre forzare un IP statico, compatibile con il proprio PC, selezionare il dispositivo R-KEY-LT e fare clic sul pulsante "ASSIGN".

IP Static IP Netmask Gateway	IP ✓ Static IP 192.168.1.168 Netmask Gateway 255.255.255.0 192.168.1		
✓ Static IP 192.168.1.168 Netmask Gateway	Static IP 192.168.1.168 Netmask Gateway 255.255.255.0 192.168.1		IP
Netmask Gateway	Netmask Gateway 255.255.255.0 192.168.1	Static IP	192.168.1.168
	255.255.255.0 192.168.1 1	Netmask	Gateway
255.255.255.0 192.168.1,1		255.255.255.0	192.168.1.1

8) Il dispositivo è ora configurabile dal web server interno digitando l'indirizzo ip del dispositivo in un browser, ad esempio:

http://192.168.1.168

Password/username predefiniti: username: admin - password: admin

ATTENZIONE!

Fino a quando il server dhcp non fornisce un valido indirizzo ip (il led PWR lampeggia), R-KEY-LT non sarà visibile dallo strumento Discovery Device.

ATTENZIONE!

Se l'R-KEY-LT viene configurato con l'ip impostato su DHCP ma il server DHCP non è attivo, dopo 5 minuti dall'accensione l'R-KEY-LT forzerà il seguente indirizzo ip predefinito:

169.254.x.y Dove x.y sono gli ultimi 2 valori dell'indirizzo MAC.

Ad esempio: indirizzo mac R-KEY-LT = C8:F9:81:11:1A (valori esadecimali) Indirizzo ip predefinito = 169.254.17.26

3.2. PRIMO ACCESSO AL WEB SERVER SENZA UN SERVER DHCP

- 1) Spegnere (OFF) I'R-KEY-LT
- Forzare la configurazione iP statico tramite impostazione dell'SW2: DIP 1 OFF DIP 2 ON Questo forzerà l'ip sull'indirizzo ip statico 192.168.90.101
- 3) Accendere (ON) I'R-KEY-LT
- Impostare l'utilizzo della configurazione della flash tramite impostazione dell'SW2: DIP 1 OFF DIP 2 OFF
- 5) Scaricare qui <u>http://www.seneca.it/products/r-key-lt</u> lo strumento Seneca Discovery Device, quindi installarlo.
- 6) Lanciare lo strumento Seneca Discovery Device e fare clic sul pulsante "Search" per visualizzare l'elenco dei dispositivi Seneca. A questo punto, selezionare il dispositivo R-KEY-LT:

#	IP	Mode	MAC	Ping	Name	Hostname	Firmware	CRC	Comma
€	192.168.90.101	STATIC		Different Subnet	Z-MINIRTU	192.168.90.101	106.0	ОК	
€	192.168.85.8	STATIC		2 ms	Z-KEY	192.168.85.8	112.0	ОК	Assig
€	192.168.90.101	STATIC		Different Subnet	R-KEY-LT	192.168.90.101	101.0	ОК	Assig
€	192.168.212.24	STATIC		Different Subnet	Z-KEY	192.168.212.24	112.0	OK	Assig
€	192.168.85.211	STATIC		2 ms	Z-KEY	192.168.85.211	112.0	ОК	Assig
€	192.168.84.192	STATIC		2 ms	Z-TWS4	ZTWS4	2940.312	OK	Assig
€	192.168.85.104	STATIC		8 ms	Z-PASS2-S	ZPASS2S	2940.331	ОК	Assig
€	192.168.84.155	STATIC		1 ms	Cloud BOX	cloudbox.seneca	7800.110	OK	
€	192.168.85.7	STATIC		5 ms	Z-PASS	192.168.85.7	3900.122	ОК	
€	192.168.84.156	STATIC		1 ms	Cloud BOX	192.168.84.156	7800.110	ОК	
€	192.168.85.6	STATIC		3 ms	Z-PASS2-S	pc-demo.seneca	2940.330	ОК	Assig
€	192.168.85.200	STATIC		7 ms	Z-TWS4	ZTWS4	2940.220	ОК	

7) Forzare un IP statico, compatibile con il proprio PC, selezionare il dispositivo R-KEY-LT con Ip 192.168.90.101 e fare clic sul pulsante "ASSIGN".

Assign IP	x
	IP
Netmask	Gateway
255.255.255.0	192.168.1.1
Assign	Cancel

8) Il dispositivo è ora configurabile dal web server interno digitando l'indirizzo ip del dispositivo in un browser, ad esempio:

http://192.168.1.168

Password/username predefiniti: username: admin - password: admin

ATTENZIONE!

Non collegare in rete due o più dispositivi con lo stesso indirizzo iP! Non collegare in rete due o più dispositivi con la configurazione SW2 DIP1=OFF e SW2 DIP2=ON! In questo caso, l'R-KEY-LT non sarà in grado di comunicare dalla porta Ethernet.

3.3. CONSIGLI PER CONFIGURARE L'IP PER PIÙ DISPOSITIVI R-KEY-LT

Se in una rete ci sono più dispositivi R-KEY-LT da installare, seguire questi consigli per velocizzare l'installazione:

- installare tutti i R-KEY-LT con SW2 DIP1 = OFF e SW2 DIP2=OFF. Se i dispositivi non sono utilizzati prima di impostare l'ip su DHCP, forzare il dispositivo su DHCP con il dip-switch;
- se si dispone di un server DHCP, è possibile trovare e configurare tutti i dispositivi con lo strumento Device Discovery.

Se non si dispone di un server DHCP, dopo 5 minuti dall'accensione i dispositivi imposteranno un diverso ip statico 169.254.x.y ,dove x.y dipendono dall'indirizzo mac e possono essere una volta ancora trovati e configurati con lo strumento Device Discovery (senza modificare la configurazione ip del PC).

	IP
✓ Static IP	192.168.1.168
Netmask	Gateway
255.255.255.0	192.168.1,1

ATTENZIONE!

Fino a quando il server dhcp non fornisce un valido indirizzo ip (il led PWR lampeggia), R-KEY-LT non sarà visibile dallo strumento Discovery Device.

Se l'R-KEY-LT viene configurato con l'ip impostato su DHCP ma il server DHCP non è attivo, dopo 5 minuti dall'accensione l'R-KEY-LT forzerà il seguente indirizzo ip predefinito:

169.254.x.y

Dove x.y sono gli ultimi 2 valori dell'indirizzo MAC.

Ad esempio:

indirizzo mac R-KEY-LT = C8:F9:81:11:1A (valori esadecimali) Indirizzo ip predefinito = 169.254.17.26

3.4. CONFIGURAZIONE DIP SWITCH SW1 E SW2

ATTENZIONE!

La configurazione tramite dip-switch è attiva solo dopo un riavvio! Per riavviare il dispositivo, è possibile spegnere/accendere l'alimentazione o premere il pulsante "Reset" fino ad illuminare tutti i led (ON) (circa 5 secondi).

AZIONE SW1	SW1 DIP1	SW1 DIP2
POLARIZZATORE BUS RS485 ON	ON	ON
POLARIZZATORE BUS RS485 OFF	OFF	OFF
AZIONE SW2	SW2 DIP1	SW2 DIP2
UTILIZZARE CONFIGURAZIONE DA	OFF	OFF
FLASH (PREDEFINITA)		
SCRIVERE E UTILIZZARE LA	ON	ON
CONFIGURAZIONE DI FABBRICA		
PREDEFINITA (CON DHCP ON)		
FORZARE IP SU 192.168.90.101	OFF	ON
RISERVATO	ON	OFF

3.5. CONFIGURAZIONE WEB SERVER

Per accedere al tipo di webserver interno, digitare l'indirizzo ip dell'R-KEY-LT nel browser, ad esempio:

http://192.168.90.101

quindi inserire username e password (predefiniti: user name = admin, password = admin).

La prima pagina è la pagina "Status":

SENECA®	R-KEY-LT	Status	Firmware Version : 9300_101	
Status			DHCP : Enabled	
Setup			ACTUAL IP ADDRESS : 192.168.85.1	68
Firmuara Undata			ACTUAL IP MASK : 255.255.252.	0
Filmware Opdate		ACTU	JAL GATEWAY ADDRESS: 192.168.85.1	
Traffic Monitor			ACTUAL MAC ADDRESS: c8-f9-81-11-2	2-33
			WORKING MODE: Modbus Ethe	ernet to Serial
			RESET	

A questo punto, fare clic su "Setup" per configurare il dispositivo:

	CURRENT	UPDATED
DHCP	Enabled	Disabled T
STATIC IP	192.168.90.101	192.168.90.101
STATIC IP MASK	255.255.255.0	255.255.255.0
STATIC GATEWAY	192.168.90.1	192.168.90.1

Se occorre reimpostare i parametri predefiniti, fare clic sul pulsante "FACTORY DEFAULT". In questa pagina, è possibile salvare e caricare una configurazione precedente.

La prima colonna rappresenta il nome del parametro, la seconda colonna (current) è il valore del parametro corrente. L'ultima colonna può essere utilizzata per modificare la configurazione corrente.

I parametri sono di seguito illustrati:

DHCP

Disable: viene utilizzato un indirizzo Ip statico Enable: l'indirizzo IP, la Maschera Ip e l'indirizzo Gateway sono ottenuti dal server DHCP. L'indirizzo IP dell'R-KEY può essere ottenuto con l'utilità Device Discovery.

Se l'R-KEY-LT viene configurato con l'ip impostato su DHCP ma il server DHCP non è attivo, dopo 5 minuti dall'accensione l'R-KEY-LT forzerà il seguente indirizzo ip predefinito:

> 169.254.x.y Dove x.y sono gli ultimi 2 valori dell'indirizzo MAC. Ad esempio: indirizzo mac R-KEY-LT = C8:F9:81:11:1A (valori esadecimali) Indirizzo ip predefinito = 169.254.17.26

STATIC IP ADDRESS

indirizzo IP statico quando DHCP è su Disable

STATIC IP MASK

maschera quando DHCP è su Disable

STATIC GATEWAY

Indirizzo Gateway quando DHCP è su Disable

TUTTI I DIRITTI RISERVATI. È VIETATA LA RIPRODUZIONE, ANCHE PARZIALE, DELLA PRESENTE PUBBLICAZIONE, SENZA PREVIO CONSENSO.

	CURRENT	UPDATED
DHCP	Enabled	Enabled V
WORKING MODE	Modbus Ethernet to Serial	Modbus Ethernet to Serial 🔻
TCP/IP PORT	502	502
PORT#1 MODBUS PROTOCOL	RTU	RTU V
PORT#1 BAUDRATE	38400	38400 🔻
PORT#1 DATA BITS	8	8 🔻
PORT#1 PARITY	None	None v
PORT#1 STOP BITS	1	1 •
PORT#1 TIMEOUT [ms]	500	500
WEB SERVER PORT	80	80
WEB SERVER AUTHENTICATION USER NAME	admin	admin
WEB SERVER AUTHENTICATION USER PASSWORD	admin	admin
IP CHANGE FROM DISCOVERY	Enabled	Enabled V

Una volta eseguita la configurazione, è necessario confermare con "APPLY" per rendere operativa la nuova configurazione.

WORKING MODE

Selezionare tra Modbus Serial to Ethernet o Modbus Ethernet to Serial.

TCP/IP PORT

Porta TCP-IP per il protocollo Modbus TCP-IP utilizzato nella modalità "Modbus Ethernet to serial" (max 8 client).

PORT#1 MODBUS PROTOCOL

Selezionare tra protocollo Modbus RTU o Modbus ASCII.

PORT#1 BAUDRATE

Utilizzato per impostare il baud rate della porta

PORT #1 BITS

Utilizzato per impostare il numero di bit per la comunicazione seriale.

Rev. 3

Pagina 16

PORT #1 PARITY

Utilizzato per impostare la parità della porta (nessuna, dispari o pari).

PORT #1 BITS

Utilizzato per impostare la parità della porta (1 o 2; tenere presente che impostando la parità, è possibile utilizzare solo 1).

PORT #1 TIMEOUT

Utilizzato per impostare il timeout sulla modalità Modbus master prima di eseguire una nuova chiamata.

WEB SERVER PORT

Utilizzato per impostare la porta TCP-IP per il Webserver.

WEB SERVER AUTHENTICATION USER NAME

Utilizzato per impostare il Nome utente per l'accesso al Webserver (se Nome utente e Password vengono lasciati vuoti, non è richiesta alcuna autenticazione per accedere al webserver)

WEB SERVER AUTHENTICATION USER PASSWORD

Utilizzato per impostare la Password per l'accesso al Webserver (se Nome utente e Password vengono lasciati vuoti, non è richiesta alcuna autenticazione per accedere al webserver)

IP CHANGE FROM DISCOVERY

Utilizzato per impostare la possibilità per un utente di modificare la configurazione IP dal software "Seneca Discovery Device"

Se viene selezionata la modalità "Modbus Serial to Ethernet", è necessario compilare anche i parametri del server Modbus TCP-IP:

Manuale utente

SERVER#1 MODE	ENABLED	DISABLED V
SERVER#1 TCP/IP PORT	502	502
SERVER#1 TCP/IP ADDRESS	192.168.85.163	
SERVER#2 MODE	ENABLED	DISABLED V
SERVER#2 TCP/IP PORT	502	502
SERVER#2 TCP/IP ADDRESS	192.168.85.163	
SERVER#3 MODE	DISABLED	DISABLED V
SERVER#3 TCP/IP PORT	502	502
SERVER#3 TCP/IP ADDRESS		
SERVER#4 MODE	DISABLED	DISABLED Y
SERVER#4 TCP/IP PORT	502	502
SERVER#4 TCP/IP ADDRESS		
SERVER#5 MODE	DISABLED	DISABLED V
SERVER#5 TCP/IP PORT	502	502
SERVER#5 TCP/IP ADDRESS		
SERVER#6 MODE	DISABLED	DISABLED V
SERVER#6 TCP/IP PORT	502	502
SERVER#6 TCP/IP ADDRESS		
SERVER#7 MODE	DISABLED	DISABLED Y
SERVER#7 TCP/IP PORT	502	502
SERVER#7 TCP/IP ADDDE CO		
SERVER#8 MODE	DISABLED	
	502	502
	302	502
SERVER#6 TCP/IP ADDRES5	DISADLED	
SERVER#3 MODE	DISABLED	DISABLED V
SERVER#9 TCP/IP PORT	502	502
SERVER#9 TCP/IP ADDRESS		
SERVER#10 MODE	DISABLED	
SERVER#10 TCP/IP PORT	502	502
SERVER#10 TCP/IP ADDRESS		
SERVER TIMEOUT [ms]	5000	5000
SERVER#1 START SLAVE ADDRESS	3	3
SERVER#1 LAST SLAVE ADDRESS	3	3
SERVER#2 START SLAVE ADDRESS	6	8
	6	8
SEDVED#2 STADT SLAVE ADDRESS	7	7
SERVER#5 START SLAVE ADDRESS	7	-
SERVER#3 LAST SLAVE ADDRESS	/	/
SERVER#4 START SLAVE ADDRESS	8	8
SERVER#4 LAST SLAVE ADDRESS	8	8
SERVER#5 START SLAVE ADDRESS	9	9
SERVER#5 LAST SLAVE ADDRESS	9	9
SERVER#6 START SLAVE ADDRESS	10	10
SERVER#6 LAST SLAVE ADDRESS	10	10
SERVER#7 START SLAVE ADDRESS	11	11
SERVER#7 END SLAVE ADDRESS	11	11
SERVER#8 START SLAVE ADDRESS	12	12
CEDVED#0 I A CT CLAVE ADDRESS	40	12
SERVER#8 LAST SLAVE ADDRESS	12	12
SERVER#9 START SLAVE ADDRESS	13	13
SERVER#9 LAST SLAVE ADDRESS	13	13
SERVER#10 START SLAVE ADDRESS	14	14
SERVER#10 LAST SLAVE ADDRESS	14	14
		FACTORY DEFAULT

APPLY

SERVER #n MODE Attivare o meno il server selezionato

SERVER #n TCP/IP PORT Porta TCP-IP server#n per il protocollo Modbus TCP-IP

SERVER #n TCP/IP ADDRESS Indirizzo IP server#n

SERVER TIMEOUT

Utilizzato per impostare il timeout del server prima di eseguire una nuova chiamata TCP-IP

SERVER #n START SLAVE ADDRESS

Utilizzato per impostare il primo slave con indirizzo della stazione Modbus collegato al Server #n.

SERVER #n LAST SLAVE ADDRESS

Utilizzato per impostare l'ultimo slave con indirizzo della stazione Modbus collegato al Server #n.

Ad esempio:

SERVER#1 START SLAVE ADDRESS = 1 SERVER#1 LAST SLAVE ADDRESS = 2 SERVER#2 START SLAVE ADDRESS = 3 SERVER#2 LAST SLAVE ADDRESS = 9 SERVER#3 START SLAVE ADDRESS = 10 SERVER#3 LAST SLAVE ADDRESS = 10

Se il master seriale effettua una richiesta all'indirizzo 1 dello slave, l'R-KEY-LT richiederà i registri dal server #1 Modbus TCP-IP.

Se il master seriale effettua una richiesta all'indirizzo 2 dello slave, l'R-KEY-LT richiederà i registri dal server #2 Modbus TCP-IP.

Se il master seriale effettua una richiesta all'indirizzo 3 dello slave, l'R-KEY-LT richiederà i registri dal server #2 Modbus TCP-IP.

...

Se il master seriale effettua una richiesta all'indirizzo 9 dello slave, l'R-KEY-LT richiederà i registri dal server #2 Modbus TCP-IP.

Se il master seriale effettua una richiesta all'indirizzo 10 dello slave, l'R-KEY-LT richiederà i registri dal server #3 Modbus TCP-IP.

Se il master seriale effettua una richiesta all'indirizzo dello slave >= 11, l'R-KEY-LT non convertirà i pacchetti da seriale a Ethernet (di conseguenza, i registri ModBus dagli slave 11,12 ecc. possono essere richiesti direttamente dal master RS485).

RICORDARSI SEMPRE DI CONFIGURARE IL NOME UTENTE E LA PASSWORD DI AUTENTICAZIONE DEL WEB SERVER PER LIMITARE L'ACCESSO AL WEB SERVER. SE SI LASCIANO VUOTE LE DUE CASELLE DI TESTO DEI PARAMETRI, NON SARÀ NECESSARIA L'AUTENTICAZIONE PER L'ACCESSO

3.6. SALVARE O CARICARE UNA CONFIGURAZIONE

Nella pagina Setup, è anche possibile esportare (salvare) o importare (caricare) una configurazione:

4. MONITOR TRAFFICO

La pagina Traffic Monitor mostra i pacchetti che l'R-KEY-LT riceve e trasmette a scopo di debug di linea:

R-KEY-LT	Real Ti	me Traffic Monitor	Firmware Version : 9300_101	
START/STOP TRAFFIC MONITOR ENABLED				
116	RECEIVE	01 03 00 00 00 01 84 0a		
14	SEND	01 03 02 12 34 b5 33		
114	RECEIVE	01 03 00 00 00 01 84 0a		
16	SEND	01 03 02 12 34 b5 33		
112	RECEIVE	01 03 00 00 00 01 84 0a		
18	SEND	01 03 02 12 34 b5 33		
109	RECEIVE	01 03 00 00 00 01 84 0a		
11	SEND	01 03 02 12 34 b5 33		
117	RECEIVE	01 03 00 00 00 01 84 0a		
13	SEND	01 03 02 12 34 b5 33		
115	RECEIVE	01 03 00 00 00 01 84 0a		
15	SEND	01 03 02 12 34 b5 33		
113	RECEIVE	01 03 00 00 00 01 84 0a		
17	SEND	01 03 02 12 34 b5 33		
110	RECEIVE	01 03 00 00 00 01 84 0a		
20	SEND	01 03 02 12 34 b5 33		
108	RECEIVE	01 03 00 00 00 01 84 0a		
12	SEND	01 03 02 12 34 b5 33		
116	RECEIVE	01 03 00 00 00 01 84 0a		
14	SEND	01 03 02 12 34 b5 33		
114	RECEIVE	01 03 00 00 00 01 84 0a		
16	SEND	01 03 02 12 34 b5 33		
111	RECEIVE	01 03 00 00 00 01 84 0a		
19	SEND	01 03 02 12 34 b5 33		
109	RECEIVE	01 03 00 00 00 01 84 0a		-

La prima colonna rappresenta il ritardo in millisecondi dall'ultimo pacchetto, la seconda colonna è la direzione del pacchetto (ricevuto da R-KEY-LT o trasmesso da R-KEY-LT), l'ultima colonna è il contenuto del pacchetto in formato esadecimale. Viene visualizzato solo il flusso ModBus (separato dallo strato TCP-IP). Nella modalità da Modbus ethernet a seriale, il monitor traffico mostra tutti i pacchetti ricevuti dalla linea seriale, ad esempio, questo è uno slave seriale con una risposta errata Modbus:

3870	SEND	01 03 00 00 00 0a c5 cd
130	RECEIVE	fe fe ff df bc cf bc 9e cf f0 3e 7c bc bc ce 3e cf ce 3c df 8e 8f cf ee ce ce ce bc ce c7 c7 87 be 9e bc bc 9f 3e 3c bc bc 3e bc 8e c7 3c cf 9f be ef bc 01 03 14 42 00 08 7c 00 0b 00 01 00 01 00 00 04 00 c3 48 00 00 44 22 b8 5d

Nella modalità da ModBus seriale a ethernet, il monitor traffico visualizzerà anche il pacchetto non valido in giallo (ad esempio un master seriale con baud rate non corretto):

18	SEND	01 03 02 12 34 05 33
988	RECEIVE	01 03 00 00 00 01 84 0a
12	SEND	01 03 02 12 34 b5 33
20990	INVALID RECEIVE	20 e0 20 e0 20 e0 20 e0
14994	INVALID RECEIVE	20 e0 20 e0 20 e0 20 e0
14100	INVALID RECEIVE	20 e0 20 e0 20 e0 20 e0
14897	INVALID RECEIVE	20 e0 20 e0 20 e0 20 e0

5. AGGIORNAMENTO FIRMWARE

I nuovi firmware possono migliorare o ripristinare funzionalità per il dispositivo R-KEY-LT; se disponibili, possono essere scaricati da:

http://www.seneca.it/products/r-key-lt

Utilizzare la pagina Firmware Update per aggiornare il dispositivo.

R-KEY-LT	Firmware Update	Firmware Version : 9300_101	
Scegli file	Nessun file selezionato	Send new firmware update selected	

IMPORTANT NOTICE: before starting the firmware update, it's safe to save the current device configuration.

Non spegnere né reimpostare l'R-KEY-LT fino al completamento del processo di aggiornamento.

La revisione del firmware caricato nel dispositivo può essere letta nella sezione superiore del web server.

6. ESTENDERE RS485 IN ETHERNET: DA MODBUS SERIALE A ETHERNET E POI DA ETHERNET A SERIALE

Ad esempio, dobbiamo estendere l'RS485 con ethernet o l'infrastruttura Wi-Fi. Per ottenere questa funzionalità, occorrono almeno due dispositivi R-KEY-LT: uno configurato nella modalità "da Seriale a Ethernet" e l'altro configurato nella modalità "da Ethernet a Seriale":

È possibile utilizzare fino a 10 dispositivi R-KEY-LT nella modalità "da ethernet a seriale" (10 server Modbus TCP-IP).

È possibile anche combinare Wifi/Ethernet come in figura:

7. GLOSSARIO

MODBUS RTU

Un protocollo aperto per le comunicazioni seriali sviluppato da Modicon Inc. (AEG Schneider Automation International S.A.S.). Semplice e affidabile, è diventato un protocollo di comunicazione standard de facto. Per maggiori informazioni <u>http://www.modbus.org/specs.php</u>

MODBUS TCP-IP

Protocollo Modbus RTU con interfaccia TCP che gira su Ethernet. Per maggiori informazioni <u>http://www.modbus.org/specs.php</u>

MODBUS ASCII

Variante del protocollo Modbus RTU che fa uso dei caratteri ASCII per la comunicazione del protocollo

DA GATEWAY MODBUS ETHERNET A SERIALE

Dispositivo che traduce, in tempo reale, da protocollo ethernet Modbus TCP-IP a protocollo seriale Modbus RTU/ASCII.

DA GATEWAY MODBUS SERIALE A ETHERNET

Dispositivo che traduce, in tempo reale, da protocollo seriale Modbus RTU/ASCII a protocollo ethernet Modbus TCP-IP.

SLAVE MASTER MODBUS RTU/ASCII

Il Master è collegato a uno o più slave, lo slave attende la richiesta di registro(i) in ingresso dal master. In un bus seriale ModBus, è consentito solo un master.

SERVER CLIENT MODBUS TCP-IP

Il Client (chiamato Master in Modbus RTU/ASCII) stabilisce una connessione con il Server (chiamato Slave in Modbus RTU/ASCII). Il Server attende una connessione in ingresso dal Client. Una volta stabilita la connessione, il Server risponde alle query dei registri dal Client.

WEBSERVER

Un software che memorizza, elabora e invia pagine web ai client. I web dei client possono essere PC, Smartphone, Tablet con un browser (Chrome, Internet Explorer, Firefox ecc...).

Rev. 3

R-KEY-LT