

Z203-1 Advanced Single-phase Network Analyser

General Description

Model Z203-1 is a complete single-phase network analyser suited for use with up to 500 Vac voltage range and 5A (35 to 75 Hz) current.

The instrument provides all the following electrical measurable quantities: Vrms, Irms, Watt, Var, Frequency, Energy, Cos ϕ .

Measurements are read through serial communication and both floating point and normalised format (except for energy). The DIP-switches (or Modbus registers) can be set for the analogue retransmission of any Vrms, Irms, Watt, Var, Frequency, and $Cos\phi$ quantity. The module is also distinguished by:

- Facilitated power supply and serial bus wiring by means of the bus housed in the DIN rail.
- Communication configurability through DIP-switch or software.
- Rs485 serial communication with MODBUS-RTU protocol, maximum 32 nodes.
- Power input isolation: 3750 Vac respect to all the other circuits.
- Isolation between communication and power supply: 1500 Vac.
- Isolation between retransmitted output and power supply: 1500 Vac.
- Analogue output signal settable in voltage or current.
- Possibility for connection and management by an external CT (only if Z203-1 is configurated by a configuration software).
- Energy counter: pulse digital output, reading on Modbus register (the count is saved into retentive memory).
- Easy configuration with the software Easy, downloadable from www.seneca.it

Technical Specifications

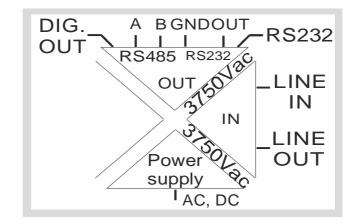
recinical Specification	115
Power Supply:	10-40 - V o 19-28 V ∿ (50-60 Hz)
Consumption:	max 2.5 W
Communication Ports:	-RS485, 1200115200 Baud. -RS232, 2400 Baud, Address: 01, Parity: NO, Data: 8 bits; Stop bits: 1.
Protocol:	MODBUS-RTU
Installation category:	II (Up to 300 V)

Input/Retransmitted output

Voltage Input :	up to 500 Vac; frequency: 35 to 75 Hz.
Current Input :	Current input rated range: 5 Arms, Max peak factor: 3,
·	Max Current: 15A, Frequency: 35 to 75 Hz.
Class/Base Precision :	Voltmeter: 0,5%.
	Amperometer: 0,5%.
	Wattmeter : 0,5 %. (active power)
Analog Output	
Output Voltage :	010 Vdc, 05 Vdc, minimum load resistance: $2 \text{ k}\Omega$.
Output Current :	$020 \text{ mA}, 420 \text{ mA}, \text{maximum load resistance: } 500 \Omega.$
Transmission error :	0,1 % (max. range).

Digital Output for pulses (en			
Type :	Passive (it must be powered), $R > 480 \Omega$		
Range :	50 mA		
Insulation :	1500 Vpeak		
Screw terminal :	1 and 6 (common with GND analogue output)		
Insulation voltage :	3750 Vac between the measurement input and all the other circuits.1500 Vac between power supply and communication. 1500 Vac between power supply and outputs.		
Protection :	IP20.		
Environmental conditions :	Temperature -10+65 °C. Humidity 3090 % non-condensing. Altitude: up to 2000 m a.s.l.		
Storage temperature :	-20+85 °C		
Signalling by LED : Connections :	Power supply, Fail, RS485 communication. -Removable 3-way screw terminals, 5.08 mm pitch. -Rear IDC10 connector for DIN rail. -3.5 mm stereophonic front jack for RS232 (COM connection.		
Box :	PA6, black		
Dimensions and weight :	100 x 112 x 17,5 mm, 140 g.		
Reference standards :	EN61000-6-4 (electromagnetic emission, industrial environment EN61000-6-2 (electromagnetic immunity, industrial environment) EN61010-1 (safety). All circuits must be insulated from the othe circuits under dangerous voltage with double insulation. The powe supply transformer must comply with EN60742: "Insulated transformers and safety transformers".		
SLUT	Notes: - Use with copper conductor. - Use in Pollution Degree 2 Environment. - Power Supply must be Class2. - When supplied by an Isolated Limited Voltage and/or Limited Current Power Supply, a fuse rated max 2,5 A shall be installed in the field.		

Operating logic

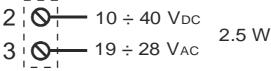

The module measures the electrical measurable quantities: Vrms, Irms, Watt, Var, Frequency, Energy, $Cos\phi$ and provides the values in the corresponding MODBUS registers. Except for energy, these measurements are rendered in both floating point and normalized format between 0..+10000 (0 ..+10000 for absolute value of VAR and $Cos\phi$, 350..750 for frequency from 35.0 Hz to 75.0 Hz). The module output transmits one of the previous quantities selected (excluding energy) as either a current or voltage value. The range of the retransmitted output is proportional to the full scale value of the quantity measured: if the signal is a 4..20 mA current signal and the quantity to be transmitted is the Vrms voltage, for example, 4 mA will equal 0 V and 20 mA will equal 500 V because these are the top and bottom full scale values for rms voltage.

Relay scaling can also be selected from 100%, 50% or 25%. In the example above, with 50% retransmission scaling, a 4 mA signal will equal 0 V and a 20 mA signal will equal 250 V. The retransmission values saturate at approximately 11 V for voltage outputs and at around 21 mA for current outputs. When the module is switched on, the appropriate setting coefficients are measured (depending on the choice of 50 or 60 Hz frequency). All the settings made will be automatically loaded when the module is reset. The FeRAM allows to recovery the energy if a black-out occurs.

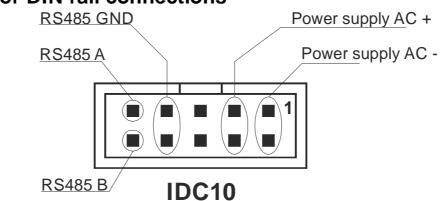
Note that the Vrms, Irms, Active Power and frequency values are obtained by direct measurement, whereas the energy, Reactive Power and cos¢ values are calculated. Active power can be only greater than 0. An example: if reactive power is -2500 VAR or +2500 VAR (physical value, electric line), corresponding numeric value is +10000 and analogue output (available at the screw terminals) is +10 V (if SW2-2,3="00"). If reactive power is 0 VAR (physical value, electric line), corresponding numeric value is 0 and analogue output (available at the screw terminals) is 0 V (if SW2-2,3="00"). Cosfi has the same behavior of reactive power. See the tables provided in APPENDIX A for the measurement and retransmission ranges in the cases of 50% and 25% scaling.

Isolations

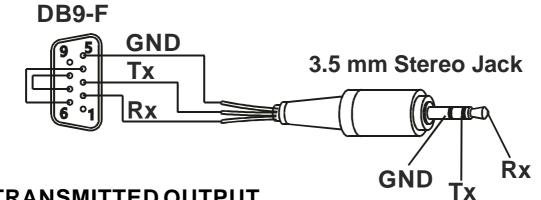
Installation rules


The module is designed to be installed in vertical position on a DIN 46277 rail. In order to ensure optimum performance and the longest working life, the module(s) must be supplied adequate ventilation and no raceways or other objects that obstruct the ventilation slots. Never install modules above sources of heat; we recommend installation in the lower part of the control panel.

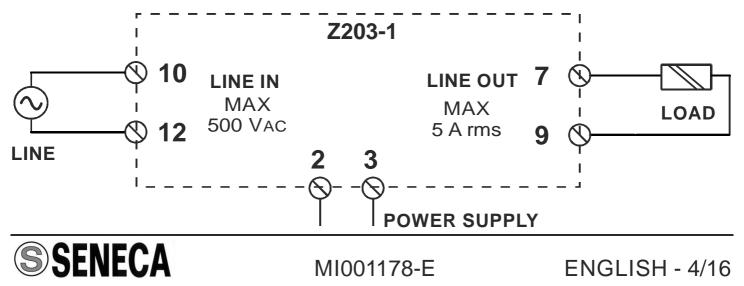
Electric connections RS485 SERIAL PORT AND POWER SUPPLY


The electric connections for power supply can be made by using either the terminals or the bus for the Seneca DIN rail. The RS485 bus connections are available only by using the bus for the DIN rail.

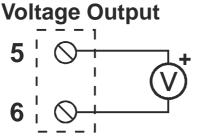
Power supply from terminals

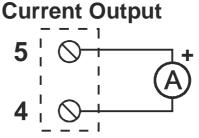

Bus connector for DIN rail connections

There is no isolation between RS485 and the retransmitted output.


RS232 SERIAL PORT

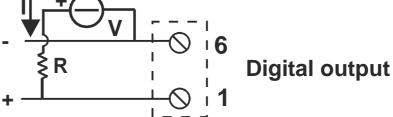
Connection cable DB9 with a 3.5 mm stereo Jack, can be assembled as indicated in the following figure, or can be bought as an accessory.


INPUT/RETRANSMITTED OUTPUT


The module accepts an input voltage of up to a maximum 500 Vac. The input voltage is connected to Terminals 10 and 12, whereas the load to be analysed is connected to Terminals 7 and 9.

ANALOGUE OUTPUT

The module provides an analog output in voltage (0..10 Vdc, 0..5 Vdc) or current (0..20 mA, 4..20 mA). We recommend using shielded cables for the electric connections above.



There is no isolation between RS485 and the analog output.

DIGITAL OUTPUT

The module has a digital output: each pulse (200 ms) corresponds to a given number of increments of the energy counted (see the register Digital Output Ratio). Imax=V/R=50mA

EXAMPLE OF CONNECTION WITH AN EXTERNAL CT (in this case, configure the Z203-1 using software, NOT dip-switch)

PWR LED (GREEN)	Meaning
Steady ON	Power supply is present.

MI001178-E

ERR LED (YELLOW	Meaning
Steady ON	Communication error between internal peripherals.
Flashing	Voltage measured at less than 40 Vac and at less than 20 mA.
RX LED (RED)	Meaning
Steady ON	Data are being received through the RS485 communication port
TX LED (RED)	Meaning
Steady ON	Data are being transmitted through the RS485 communication port

Serial interface

For detailed information on RS485 serial interface, consult the documentation provided by the website www.seneca.it, in the section **Prodotti/Serie Z-PC/MODBUS TUTORIAL**.

DIP-SWITCH SETTING

Default configuration

The instrument leaves the factory with all DIP-switches configured in position 0. The settings of the DIP-switches defines the module's communication parameters: address and speed.

In all the following tables, the indication • corresponds to a DIP-switch set in 1 (ON); no indication is provided when the DIP-switch is set in 0 (OFF).

BAU	AUD RATE									
SW1	/1 1 2									
			9600 Baud							
		ullet	19200 Baud							
			38400 Baud							
			57600 Baud							

ADDI	DDRESS							
SW1	3	4	5	6	7	8		
							Communication Parameters from EEPROM (*)	
							Fixed Address: 01	
							Fixed Address: 02	
							Fixed Address: 03	
Fixed Address: 04								
	Х	Х	Х	Х	Х	Х	Fixed Address, as from binary representation.	
							Fixed Address: 63	

NOMINAL FREQUENCY (50 or 60 Hz)

SW2 1

Network Frequency: 50 Hz

Network Frequency: 60 Hz

OUTP	Ουτρυτ τγρε								
SW2	2	3							
			010 V						
			05 V						
			020 mA						
			420 mA						

RETR	RETRANSMISSION SCALING (OUT. RANGE)							
SW2	4	5						
			100%					
			50 %					
			25 %					
			Not allowed					

(*) The default configuration is the following: Address 1, 38400, no parity, 1 stop bit.

SELI	EC	;TI	10	OF QUANTITY RETRANSMITTED (RETR. OUTPUT)
SW2	6	7	8	
				Not allowed (configuration by EEPROM if SW2-18 are all «0»)
			\bullet	Retransmission of Vrms
				Retransmission of Irms
	Retransmission of Watt			
	\bullet			Retransmission of cos ϕ
				Retransmission of frequency
				Retransmission of VAR
	ullet		\bullet	Not allowed

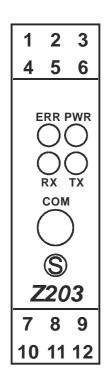
TERM	TERMINATOR RS485							
SW3	1	2						
		Х	Terminator OFF, the SW3-2 is not used.					
		х	Terminator ON, the SW3-2 is not used.					

Programming

For the product's programming and/or configuration tools, consult the website www.seneca.it.

During initial programming, the EEPROM (SW3 ..8 in OFF position) default setting values originally programmed as follows can be used:

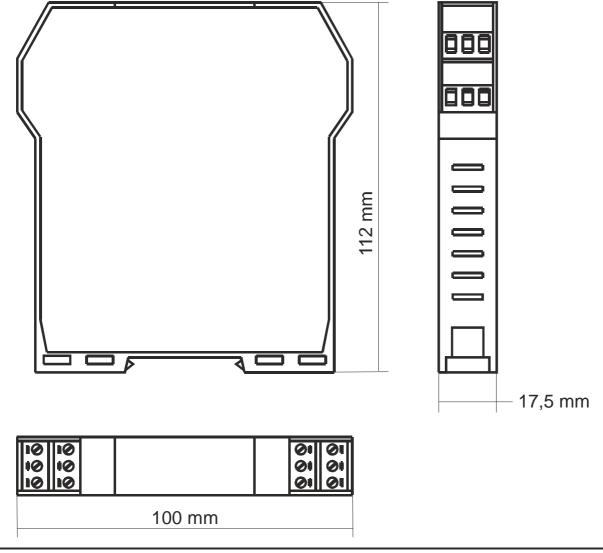
Address = 01, SPEED =38400 Baud, PARITY= none, BIT NUMBER = 8, STOP BIT=1.


The module can also be programmed through the front connector (COM) while paying attention to set the following connection parameters:

Address = 01, Speed = 2400 Baud, PARITY = none, STOP BIT = 1.

The Com communication port behaves in the same way as the RS485 bus port except for the communication parameters described above. It also has priority over the RS485 serial port and closes after 15 seconds of inactivity.

Frontal Panel and Led Dip-switch and Modbus register



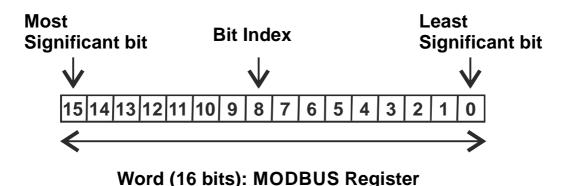
If all the dip-switch of SW2 are equal to zero, so

"00000000": the module acquires the configuration from EEPROM for: nominal frequency, output-type, outputelectric value, retransmitted output, electric start scale, electric end scale (see the modbus registers).

If at least one dip-switch of SW2 is different from zero: the module acquires <u>only the configurations appliable</u> from dip-switch SW2. For example: if SW2 is equal to "1 | 00 | 00 | 001", then the nominal frequency is configurated as "60 Hz" from dip-switch, the output type is configurated as "0..10 V" from dip-switch, the retransmission scaling is configurated as "100%" and the retransmitted output is VRMS. In this case, the content of the registers 40110/40111, 40112/40113 (retransmitted output range), 40114/40115, 40116/40117 (analogue output range) are not acquired for the scaling.

Overall Dimensions

MODBUS REGISTERS


Z203-1 has MODBUS 16 bits (words) registers, accessible by RS485 or RS232 serial communication. In the next paragraphs, we shall describe the supported MODBUS commands, and the functions of the registers.

Supported MODBUS Commands

Code	Function	Description
03	Read Holding Registers	Reading of registers up to 16 words at a time within the same group.
06	Write Single Register	Writing of a word register

Holding Registers

The 16-bit Holding Registers have the following structure:

The Bit notation [x:y] shown in the table indicates all the bits from x to y. For example, Bit [2:1] indicates bit 2 and bit 1, and illustrates the meaning of the various linked combinations of the values of the two bits. Remember that the MODBUS 3 and 6 functions (respectively of multiple reading and single writing) can be executed on the following registers. Default values are marked with * symbol.

The following indication (only readable or also writable) is provided for every register: R: Readable W: Writeable

GROUP 1

	Description Bit [15:8]: contain the module's ID	ADD.	R/W
MACHINE ID	Bit [7:0] contain the firmware's external revision.	40001	R
ADDR	Register for the setting of the module's address and parity control.	40002	R/W
Bit [15:8]	Set the module's address. Permissible values from 0x00 to 0xFF (decimal values in the interval of 0-255). Default address: 1.		
Bit [7:0]	Set the type of parity control: 00000000 : No parity (NONE)*(Default) 00000001 : Even parity (EVEN) 00000010 : Odd parity (ODD)		
BAUDR	Register for the setting of the Baud rate and the response delay time in characters.	40003	R/W
Bit [15:8]	Set the serial communication speed value (Baudrate): 00000000 (0x00): 4800 Baud 00000001 (0x01): 9600 Baud 00000010 (0x02): 19200 Baud 00000011 (0x02): 19200 Baud 00000011 (0x03): 38400 Baud*(Default). 00000100 (0x04): 57600 Baud 00000101 (0x05):115200 Baud 00000111 (0x06): 1200 Baud 00000111 (0x07): 2400 Baud		
Bit [7:0]	Set the response delay time in characters that represents the number of pauses of 6 characters each to be entered between the end of the Rx message and the start of the Tx message. Default value: 0 (hexadecimal: 0x00).		
CT_RATIO	Register for the setting of the coefficient of the CT connected to the instrument.	40004	R/W
Bit [15:0]	Set the coefficient for any CT connected to the module. The transformation ratio multiplied by 10 must be entered. This coefficient will influence the floating point value of IRMS, Active Power and Reactive Power, but will not influence the integer (0 - 10000) and retransmission values. Default: 10 (retransmission is not influenced by CT value, if configuration from Dip- switch)		
FW_CODE	Register containing the firmware's internal code.	40005	R

FREQUENCY	Register to set the network frequency400		R/W
Bit [15:0]	If the dip switch Sw2 are configurated as «00000000»: 0=50 Hz; 1=60 Hz		
OUT TYPE	Register to set the range of the analogue400output		R/W
Bit [15:0]	If SW2 are equal to "00000000", analogue output is: 0=voltage; 2=current. In this case, start scale output is reg.40114/40115, end scale output is reg.40116/40117		
ELECTRICAL MEASURE TO OUT	Register to set the retransmitted output	<u>out</u> 40009 R/V	
Bit [15:0]	If SW2 are equal to "00000000": 0=VRMS; 1=IRMS; 2=potentiometer; 3=cosfi; 4=frequency; 5=VAR; otherwise: see the Dip-switch table		
GROUP 2			
ENERGY_M	Measure of energy in unsigned long (most significant word)	40079	R
Bit [15:0]	Measure of energy in W/h (MSW).		
ENERGY_L	Measure of energy in unsigned long (least significant word)	40080	R
Bit [15:0]	Measure of energy in W/h (LSW).		
VRMS_FLOAT_M	Vrms voltage measurement in floating point (most significant word)	40081	R
Bit [15:0]	Vrms voltage measurement in V (MSW).		
VRMS_FLOAT_L	Vrms voltage measurement in floating point (least significant word)	40082	R
Bit [15:0]	Vrms voltage measurement in V (LSW).		
IRMS_FLOAT_M	Irms current measurement in floating point 400 (most significant word).		R
Bit [15:0]	Irms current measurement in mA (MSW).		
IRMS_FLOAT_L	Irms current measurement in floating point 40084 (least significant word).		R
Bit [15:0]	Irms current measurement in mA (LSW).		
© CENIE CA			

WATT_FLOAT_M	Active power measurement in floating point (most significant word).	40085	R	
Bit [15:0]	Active power measurement in W (MSW).			
WATT_FLOAT_L	Active power measurement in floating point 400 (least significant word).		R	
Bit [15:0]	Active power measurement in W (LSW).			
FREQ_FLOAT_M	Frequency measurement in floating point 40 (most significant word)		R	
Bit [15:0]	Frequency measurement in Hz (MSW).			
FREQ_FLOAT_L	Frequency measurement in floating point (least significant word)	40088	R	
Bit [15:0]	Frequency measurement in Hz (LSW).			
VARRMS_FLOAT_M	Reactive power measurement (in VARrms) in floating point (most significant word).	40089	R	
Bit [15:0]	Reactive power measurement in VARrms (MSW).			
VARRMS_FLOAT_L	Reactive power measurement (in VARrms) in floating point (least significant word).	40090	R	
Bit [15:0]	Reactive power measurement in VARrms (LSW).			
COS ⁴ FLOAT_M	Cos measurement in floating point (most significant word)	40091	R	
Bit [15:0]	Cosø measurement (MSW).			
COS ⁴ FLOAT_L	Cos measurement in floating point (least significant word)	40092	R	
Bit [15:0]	Cos∲measurement (LSW).			

GROUP 3

	Status Register		R/W	
Bit 7	<i>Zero cross error</i> 1: signals that the input voltage is less than 40 V.			
Bit [6:5]	Reserved.			
Bit 4	Communication error with the sensor: 1: signals an error of communication with the sensor.			
Bit [3:1]	Reserved.			
Bit 0	1: Communication error with Feram			
VRMS_INT	Register containing the measurement of the Vrms voltage in 0 10000 scale.	40095	R	
Bit [15:0]	Measurement of the Vrms voltage with 0 10000 scale.			
IRMS_INT	Register containing the measurement of the Irms current in 0 10000 scale.		R	
Bit [15:0]	Measurement of the Irms current with 0 10000 scale.			
WATT_INT	Register containing the measurement of the active power in 0 10000 scale.		R	
Bit [15:0]	Measurement of the active power with 0 10000 scale.			
VAR_INT	Register containing the measurement of the reactive power in 0+ 10000 scale.	40098	R	
Bit [15:0]	Measurement of the reactive power with 0+10000 scale (absolute value)			
COS∲_INT	Register containing the measurement of $cos\phi$ in 0 + 10000 scale.	40099	R	
Bit [15:0]	Measurement of $\cos\phi$ (absolute value)			
FREQUENCY	Measure of frequency		R	
Bit [15:0]	Measure frequency between 350 (35.0 Hz) and 750 (75.0 Hz)			

COMMAND	Register of command	40102	R/W	
Bit [15:0]	0xBACA: this command loads the value CommandAux in the register energy; 0x6500 forces the RESET of the module.			
COMMANDAUX_M	Register of auxiliary command (most significant word)	40103	R/W	
Bit [15:0]	Value to load in the register energy			
COMMANDAUX_L	Register of auxiliary command (least significant word)	40104	R/W	
Bit [15:0]	Value to load in the register energy			
START SCALE ELECTRIC_M	Electrical start scale of retransmitted output in floating-point (most significant word)	40110	R/W	
Bit [15:0]	start scale value. To know which input is acquired, see reg.40009 (if SW2 are "00000000")			
END SCALE ELECTRIC_L	Electrical start scale of retransmitted output in floating-point (least significant word)40111			
Bit [15:0]	As the previous (least significant word)			
STOP SCALE ELECTRIC_M	Electrical end scale of retransmitted output in floating-point (most significant word)	40112	R/W	
Bit [15:0]	stop scale value. To know which input is acquired, see reg.40009 (if SW2 are "00000000")			
STOP SCALE ELECTRIC_L	Electrical end scale of retransmitted output in floating-point (least significant word)	40113	R/W	
Bit [15:0]	As the previous (least significant word)			
START SCALE OUTPUT_M	Start scale of analogue output in floating- point (most significant word)	40114	R/W	
Bit [15:0]	Output start scale value. To know the analogue output, see reg.40008 (if SW2 are equal to "00000000")		1	
START SCALE OUTPUT_L	Start scale of analogue output in floating- point (least significant word)	40115	R/W	
Bit [15:0]	As the previous (least significant word)			

STOP SCALE OUTPUT_M	Stop scale of analogue output in floating-point (most significant word)	40116	R/W	
Bit [15:0]	Output stop scale value. To know the analogue output, see reg.40008 (if SW2 are equal to "0000000")			
STOP SCALE OUTPUT_L	Stop scale of analogue output in floating-point 4011 (least significant word)			
Bit [15:0]	As the previous (least significant word)			
DIG. OUT ENERGY RATIO_M	Digital output energy ratio (unsigned long, most significant word)	40118	R/W	
Bit [15:0]	Partition coefficient with which a pulse is generated. If it is 1: the pulse is generated for each unit increment of energy, if it is 10: the pulse is generated every 10 increments of energy, etc			
DIG. OUT ENERGY RATIO_L	Digital output energy ratio (unsigned long, least significant word)	40119	R/W	
Bit [15:0]	As the previous (least significant word)			
ENERGY RATIO_M	Energy ratio (most significant word)	40120	R/W	
Bit [15:0]	Multiplier coefficient with which the energy counter is incremented. If it is 1: the energy is counted as W/h, if it is 0,001: the energy is counted as kW/h, etc Default: 0,001		1	
ENERGY RATIO_L	Energy ratio (least significant word) 4012			
Bit [15:0]	As the previous (least significant word)			

APPENDIX A : Retransmission scaling (from Dip-Switch)

100 % Scaling: Retransmission scaling

U	-	•		
Electrical Quantities	Measurement range	Selectable analogue output		
Vrms	0500 Vrms	010 V, 05 V, 020 mA or 420 mA		
Irms	05 A	010 V, 05 V, 020 mA or 420 mA		
Active Power	02500 W	010 V, 05 V, 020 mA or 420 mA		
Reactive Power (*)	02500VAR	010 V, 05 V, 020 mA or 420 mA		
COS\$(*)	01	010 V, 05 V, 020 mA or 420 mA		
Frequency	3565 Hz	010 V, 05 V, 020 mA or 420 mA		
50 % Scaling: Re	50 % Scaling: Retransmission scaling			
Electrical Quantities	Measurement range	Selectable analogue output		
Vrms	0250 Vrms	010 V, 05 V, 020 mA or 420 mA		
Irms	02,5 A	010 V, 05 V, 020 mA or 420 mA		
Active Power	01250 W	010 V, 05 V, 020 mA or 420 mA		
Reactive Power (*)	01250VAR	010 V, 05 V, 020 mA or 420 mA		
COS\$(*)	00,5	010 V, 05 V, 020 mA or 420 mA		
Frequency	4575 Hz	010 V, 05 V, 020 mA or 420 mA		
25 % Scaling: Retransmission scaling				
Electrical Quantities	Measurement range	Selectable analogue output		
Vrms	0125 Vrms	010 V, 05 V, 020 mA or 420 mA		
Irms	0 1 25 4	$0.10 \lor 0.5 \lor 0.20 m \land or 1.20 m \land$		

Vrms	0125 Vrms	010 V, 05 V, 020 MA OF 420 MA
Irms	01,25 A	010 V, 05 V, 020 mA or 420 mA
Active Power	0625 W	010 V, 05 V, 020 mA or 420 mA
Reactive Power (*)	0625VAR	010 V, 05 V, 020 mA or 420 mA
$\cos\phi(*)$	00,25	010 V, 05 V, 020 mA or 420 mA
Frequency	4060 Hz	010 V, 05 V, 020 mA or 420 mA

(*) absolute values

Disposal of Electrical & Electronic Equipment (Applicable throughout the European Union and other European countries with separate collection programs) This symbol, found on your product or on its packaging, indicates that this product should not be treated as household waste when you wish to dispose of it. Instead, it should be handed over to an applicable collection point for the recycling of electrical and electronic equipment. By ensuring this product is disposed of correctly, you will help prevent potential negative consequences to the environment and human health, which could otherwise be caused by inappropriate disposal of this product. The recycling of materials will help to conserve natural resources. For more detailed information about the recycling of this product, please contact your local city office, waste disposal service or the retail store where you purchased this product.

This document is property of SENECA srl. Duplication and reprodution are forbidden, if not authorized. Contents of the present documentation refers to products and technologies described in it. All technical data contained in the document may be modified without prior notice Content of this documentation is subject to periodical revision.

SENECA s.r.l.

Via Austria, 26 – 35127 – PADOVA – ITALY Tel. +39.049.8705355 - 8705359 - Fax +39.049.8706287 For manuals and configuration software, please see:www.seneca.it

MI001178-E