USER MANUAL

SENECA s.r.I.
Via Austria, 26 - 35127 - PADOVA - ITALY
Tel. +39.049.8705355-8705359 Fax. +39.049.8706287
Web site: www.seneca.it
Technical assistance: supporto@seneca.it (IT), support@seneca.it (Other)
Commercial reference: commerciale@seneca.it (IT), sales@seneca.it (Other)

This document is property of SENECA srl. Duplication and reproduction of its are forbidden (though partial), if not authorized. Contents of present documentation refers to products and technologies described in it. Though we strive for reach perfection continually, all technical data contained in this document may be modified or added due to technical and commercial needs; it's impossible eliminate mismatches and discordances completely. Contents of present documentation is anyhow subjected to periodical revision. If you have any questions don't hesitate to contact our structure or to write us to e-mail addresses as above mentioned.

Seneca Z-PC Line module: Z203-1

The Z203-1 module is a single-phase electric-line analyzer for line voltage up to 500 Vac and line current up to $5 \mathrm{~A}(35 \mathrm{~Hz}$ to 75 Hz). The module has an analogue output, electrical value directly proportional to selected input: voltage-type out or current-type out. The electrical value (output) is available on screw terminals and the normalized value is available on RS485 registers. A digital output is available, too, to generate a number of pulses depending on the energy increment.

General characteristics

$>$ It is possible to detect, with reference to the electric line and load connected to its: RMS voltage, RMS current, active power, reactive power, $\cos \Phi$, frequency, energy
$>$ A FeRAM allows to recovery the energy if a black-out occurs
> Energy counter: pulse digital output, reading on Modbus register
$>$ It is possible to change electrical start/end scale by Dip-switch (see table 1, for each type of retransmitted output) or by Modbus registers (every value)
$>$ Normalized start/end scale between 0..+10000 (for RMS voltage, RMS current, active power), $350 . .750$ (for frequency) or between $0 . .+10000$ (for absolute values of reactive power, cos Φ). It isn't possible to associate a normalized value to the energy quantity
$>$ Possibility for connection and management by an external Current Transformer (only if Z203-1 is configurated by a configuration software).
$>$ Easy configuration with the software Easy, downloadable from www.seneca.it
$>$ Configuration of the module (node) address and baud-rate by Dip-Switches
$>$ Configuration of the electrical-network nominal frequency, output type, retransmission scaling and retransmitted output by Dip-Switches
$>$ It is possible to add/remove the module to/from RS485-bus without disconnecting the communication or power supply
> It is possible to switch automatically RS485 to RS232 or vice versa

Features

INPUT/RETRANSMITTED OUTPUT (ELECTRIC-NETWORK SIDE)	
Number	1
Accuracy	0.5\% of E.E.S. (Voltmeter, ampere-meter, watt-meter for active power, frequency-meter)
	Thermal stability: < $100 \mathrm{ppm} /{ }^{\circ} \mathrm{K}$
	EMI: < 1\%
Protection	This module provides inputs protection against the ESD (up to 4 kV)
Voltage-type IN	E.S.S./E.E.S.(Electrical Start/End Scale) configurable between: $0 . .125 \mathrm{Vac} ; 0 . .250 \mathrm{Vac} ; 0 . .500 \mathrm{Vac}$. Input impedance: $600 \mathrm{k} \Omega$
Current-type IN	E.S.S./E.E.S.(Electrical Start/End Scale) configurable between: 0..1.25A; 0..2.5A; 0..5A. Peak factor: 3; rated current: 5 Arms; max current: 15 A . Input impedance: $3.3 \mathrm{~m} \Omega$
ANALOGUE OUTPUT	
Number	1
Resolution	12 bits
Accuracy	0.1\% of output scale range
Voltage-type OUT	Output scale range configurable between: 0-10 V or 0-5 V by dipswitch, as desired by modbus register (minimum resistance that

	can be connected: $2 \mathrm{k} \Omega$). Saturation if voltage $>11 \mathrm{~V}$
Current-type OUT	Output scale range configurable between: $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ by dip-switch, as desired by modbus register (max resistance that can be connected: 500Ω). Saturation if current $>21 \mathrm{~mA}$
DIGITAL OUTPUT: PULSE COUNTER FOR ENERGY INCREMENT	

POWER SUPPLY	$10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$
Supply voltage	$\mathrm{Max}: 2.5 \mathrm{~W}$
Power consumption	

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, it is recommended to install a fuse.

Connections

Input connection

Connect to the screw terminals 10 and 12 the electric network.
Connect to the screw terminals 7 and 9 the load to analyze.

Output connection

I- $\sqrt{-3}$ Shielded cables are recommended to connect the outputs (through screw terminals: 5, 6 if voltage-type output; 4, 5 if current-type output).

Digital output for counter

The energy value (W/h; see the register 40120/40121) is saved on FeRAM; if the digital output is activated, it sends a pulse for each unit increment of energy (pulse duration: 200 ms). Maximum current: $I_{\text {MAX }}=V / R=50 \mathrm{~mA}$

Connection with current transformer (in this case, configure the Z203-1 using software, NOT dip-switch)

The Z203-1 module allows to control a single-phase load connected to the electric network. To use the Z203-1 for high power devices, it is possible to connect a current transformer.

Only the connection shown in the following figure is allowed, if a current transformer need to be connected.

Screw terminal 7 is open.

Parameters of current transformer CT are shown in the following table.

P1/K	Primary wound input
P2/L	Primary wound output
S2/K	Secondary wound input
S2/L	Secondary wound output

Dip-switches table

I- -8 In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).

BAUD-RATE (Dip-Switches: SW1)						
1	2	Meaning				
		Baud-rate=9600 Baud				
	-	Baud-rate=19200 Baud				
\bullet		Baud-rate=38400 Baud				
\bullet	-	Baud-rate=57600 Baud				
ADDRESS (Dip-Switches: SW1)						
3	4	5	6	7	8	Meaning
						Address and Baud-Rate are acquired from memory(EEPROM)
					-	Address=1
				\bullet		Address=2
				\bullet	-	Address=3
			\bullet			Address=4
X	X	X	X	X	X
\bullet	-	\bullet	\bullet	-	\bullet	Address=63

NOMINAL FREQUENCY (Dip-Switches: SW2)

1	Meaning
50 Hz	
•	60 Hz
OUTPUT TYPE (Dip-Switches: SW2)	

OUTPUT TYPE (Dip-Switches: SW2)

- Output=0..5V

Output=0..20mA

- - Output=4..20mA

RETRANSMISSIONS SCALING/OUT. RANGE (Dip-Switches: SW2)

Rescaled=100\% (see table 1)

- Rescaled $=50 \%$ (see table 1)

Rescaled=25\% (see table 1)

- - Not allowed

SELECTION OF QUANTITY RETRANSMITTED/RETR. OUTPUT (Dip-Switches: SW2)

- Retransmission of RMS voltage

Retransmission of RMS current
Retransmission of Active power Retransmission of $\operatorname{Cos} \Phi$

- Retransmission of Frequency

Retransmission of Reactive power
Not allowed

The measure ranges for RMS voltage, RMS current, active power, reactive power, $\cos \Phi$, frequency are shown in the following table, if configuration by Dip-Switch.

RMS voltage, RMS current, active power, frequency are measured by Z203-1 directly; energy, reactive power, $\cos \Phi$ are obtained through processing by Z203-1.

Possible measures	Retransmitted output range (100\%)		Retransmitted output range (50\%)		Retransmitted output range (25\%)	
	Min	Max	Min	Max	Min	Max
RMS voltage	OVac	500 Vac	0 Vac	250 Vac	0 Vac	125 Vac
RMS current	0A	5A	OA	2.5A	OA	1.25A
Active power	OW	2500W	OW	1250 W	0 W	625W
Reactive power	OVAR	2500 VAR	0 VAR	1250 VAR	0 VAR	625 VAR
$\operatorname{Cos} \Phi$	0	1	0	0.5	0	0.25
Frequency	35 Hz	65 Hz	45 Hz	75 Hz	40 Hz	60 Hz

Table 1 - Measure range configurable from Dip-Switch (see the dip-switch table)

Physical value	Range of normalized value
VRMS from 0 to 500 V	$0 . .10000$
IRMS from 0 to 5 A	$0 . .10000$
WATT from 0 to 2500 W	$0 . .10000$
Reactive power from -2500 to 2500 VAR	$0 . .10000\left({ }^{*}\right)$
Power factor from -1 to 1	$0 . .10000\left({ }^{* *}\right)$
Frequency from 35 Hz to 75 Hz	$350 . . .50$

Table 2 - Range of normalized measures
(*) For example: if reactive power is -2500 VAR (physical value, electric line), corresponding numeric value is +10000 and retransmitted output (available at the screw terminals) is +10 V (if SW2-2,3="00").

If reactive power is 0 VAR (physical value, electric line), corresponding numeric value is 0 and retransmitted output (available at the screw terminals) is 0 V (if SW2-2,3="00").

If reactive power is +2500 VAR (physical value, electric line), corresponding numeric value is +10000 and retransmitted output (available at the screw terminals) is +10 V (if SW2-2,3="00").
${ }^{(* *)}$ The same behavior of reactive power.

IMPORTANT!

If all the dip-switch of SW2 are equal to zero, so " 00000000 ": the module acquires the configuration from EEPROM for: nominal frequency, output-type, output-electric value, retransmitted output, electric start scale, electric end scale (see the modbus registers).

If at least one dip-switch of SW2 is different from zero: the module acquires only the configurations appliable from dip-switch SW2. For example: if SW2 is equal to " 1 | $00 \mid 00$ | 001 ", then the nominal frequency is configurated as " 60 Hz " from dip-switch, the output type is configurated as " $0 . .10 \mathrm{~V}$ " from dip-switch, the retransmission scaling is configurated as " 100% " and the retransmitted output is VRMS. In this case, the content of the registers 40110/40111, 40112/40113 (retransmitted output range), 40114/40115, 40116/40117 (analogue output range) are not acquired for the scaling.

RS485 Register table

Name	Range	Interpretation of register	R/W	Default	Address
MachinelD	1	MSB, LSB	R		40001
	Id_Code (Module ID)				Bit [15:8]
	Ext_Rev (Module version)				Bit [7:0]
FWREV	硣	Word	R		40005
	Firmware Code				
Status	/	Bit	R/W		40093
	Reset of module: 0x65 (101 decima)=activated; any other number=deactivated			1	Bit [15:8]
	Input voltage: $0=$ voltage $>40 \mathrm{Vrms}$; $1=$ voltage $<40 \mathrm{Vrms}$			1	Bit 7
	These bits aren't used			1	Bit [6:5]
	Hardware error: $0=$ there isn't; $1=$ there is			1	Bit 4
	These bits aren't used			1	Bit [3:1]
	Communication error with FeRAM: $0=$ there isn't; $1=$ there is			1	Bit 0
BaudrateDelay	1	MSB, LSB	R/W		40003
	Baud-rate for RS485 (baud-rate of module/node if parameters are configurated by memory modality): $0=4800$; $1=9600$; $2=19200 ; 3=38400 ; 4=57600 ; 5=115200$; 6=1200; 7=2400			38400	Bit [15:8]
	Delay for RS485 (delay of communication response: it represents the number of the pauses(*) between the end of $R x$ message and the start of Tx message): from $0 \times 00=0$ to $0 \times F F=255$ (*) 1 pause $=6$ characters			0	Bit [7:0]
Address Parity	$\begin{aligned} & \text { Address: from } 0 \times 01=1 \text { to } \\ & 0 \times F F=255 \end{aligned}$	MSB, LSB	R/W		40002
	Address for RS485 (address of module/node if parameters are configurated by memory modality)			1	Bit [15:8]
	Parity for RS485: 0=there isn't; 1=even; 2=odd			0	Bit [7:0]
Nominal Frequency		Word	R/W		40007
	If Dip-Switches SW2 are equal to " 00000000 ": $0=50 \mathrm{~Hz}$;$1=60 \mathrm{~Hz}$				
CONFIGURATION OF RETRANSMITTED QUANTITY (ALTERNATIVE TO DIP-SWITCH)					
Measured quantity on electric-line		Word	R/W		40009
	If Dip-Switches SW2 are equal to "00000000": quantity retransmitted is: $0=$ VRMS; 1=IRMS; 2=potentiometer;				

equal to 1 , the energy is counted as W / h; if it is equal to 1000 , the energy is counted as kW / h, etc...If it is 3600 : the energy is counted as W/s

How to interpret the quantities

NOTE: In the following figures, "A", "B", "A1", "B1", "C", "D" are references for the table 3 .

(*) Limit values of voltage, current, cosfi depend on the dip-switch SW2-4,5. In the previous figures are shown the limits related to 100% retransmission scaling.

As you can see in the following table, there are two alternative modalities to configure the Z2031: by RS485 registers or by Dip-Switch SW2.

Ref.	FEATURE	Rs485 Registers (**)	Dip-switch
1	Retransmitted quantity: VRMS, ARMS, W, VAR, cosfi, Hz	40009	SW2-6,7,8
A,A1	Start scale of retr. quantity	40110/40111	SW2-4,5
B, B1	Stop scale of retr. quantity	40112/40113	SW2-4,5
1	Rescaled value ($0 . .10000$ or $350 . .750$)	Read: 40095.. 40101	1
1	Type of analog output: voltage or current	40008	SW2-2,3
C	Start scale of analog output: V or mA	40114/40115	SW2-2,3
D	Stop scale of analog output: V or mA	40116/40117	SW2-2,3

Table 3 - Two alternative modalities to configure the Z203-1: by registers or Dip-switch
(**) If $S W 2=$ » 00000000 », all the configurations are acquired from registers. If start/stop scale value of analogue output (C,D) are configurated from Dip-Switch, start scale (for example: 4 mA) corresponds to the rescaled value=0 and stop scale (for example: 20 mA) corresponds to the rescaled value $=10000$.

LEDs for signalling

In the front-side panel there are 4 LEDs and their state refers to important operating conditions of the module.

LED	LED status	Meaning
PWR	Constant light	The power is on
ERR	Blinking light	Measure of voltage: < 40 Vac and < 20 mA
	Constant light	The module has at least one of the errors described in RS485 Registers table
RX	Constant light	Verify if the bus connection is corrected
	Blinking light	The module received a data packet
TX	Blinking light	The module sent a data packet

Easy-SETUP

To configure the Seneca Z-PC Line modules, it is possible to use Easy-SETUP software,
Free-downloadable from the www.seneca.it; the configuration can be performed by RS232 or RS485 bus communication.

