

SENECA s.r.l.

Via Austria 26, PADOVA – ITALY

Tel. +39.049.8705355 - 8705359 Fax. +39.049.8706287

Web site: www.seneca.it

Technical assistance: support@seneca.it (IT), support@seneca.it (Other)

Commercial reference: <u>commerciale@seneca.it</u> (IT), <u>sales@seneca.it</u> (Other)

This document is property of SENECA srl. Duplication and reprodution are forbidden, if not authorized. Contents of the present documentation refers to products and technologies described in it. All technical data contained in the document may be modified without prior notice Content of this documentation is subject to periodical revision.

To use the product safely and effectively, read carefully the following instructions before use. The product must be used only for the use for which it was designed and built. Any other use must be considered with full responsibility of the user. The installation, programmation and set-up is allowed only for authorized operators; these ones must be people physically and intellectually suitable. Set up must be performed only after a correct installation and the user must perform every operation described in the installation manual carefully. Seneca is not considered liable of failure, breakdown, accident caused for ignorance or failure to apply the indicated requirements. Seneca is not considered liable of any unauthorized changes. Seneca reserves the right to modify the device, for any commercial or construction requirements, without the obligation to promptly update the reference manuals.

No liability for the contents of this documents can be accepted. Use the concepts, examples and other content at your own risk. There may be errors and inaccuracies in this document, that may of course be damaging to your system. Proceed with caution, and although this is highly unlikely, the author(s) do not take any responsibility for that. Technical features subject to change without notice.

MI00253-9-EN

Date	Revision	Notes
22/02/2016	1	Rewriting
28/02/2018	2	Changed Upper Title
23/03/2018	3	Added measure unit for Measure 1 and 2 registers
06/06/2018	400	New hardware revision 2 New firmware with all 32 bits counters and new features
12/06/2018	401	Fix Table of contents
22/06/2018	402	Fix Register 40020 Bit[0]
19/11/2018	403	Fix Filter Register 40019
14/12/2018	404	Added new chapter Easy Setup Full configuration
28/02/2019	405	Added info from fw rev 4007 Added Chapter "Counters filter"
03/09/2019	406	Fix USB connection on Chapter 7

Table of contents

SE	NECA Z-10-D-IN "HW2"4
1.	INTRODUCTION
1.1	. FEATURES
2.	FEATURES
3.	INPUT CONNECTIONS
4.	DIP-SWITCHES TABLE9
5.	COUNTERS FILTER10
6.	MODBUS RTU REGISTER TABLES11
6.1	. BIT POSITION CONVENTION IN THE HOLDING REGISTERS:
6.2	. MODBUS HOLDING REGISTERS ADDRESSES (FUNCTION CODE 3):
6.3	. MODBUS COIL REGISTERS ADDRESSES (FUNCTION CODE 1):22
6.4 2):	. MODBUS INPUT REGISTERS (READ ONLY) ADDRESSES (FUNCTION CODE 23
7.	FULL CONFIGURATION WITH EASY SETUP24
Easy	24 Setup Menu
7.1	. CREATING A PROJECT CONFIGURATION25
7.2	. TESTING THE DEVICE
7.2	.1. THE DATALOGGER

Seneca Z-10-D-IN "HW2"

CAUTION!

UNDER ANY CIRCUMSTANCES, SENECA S.R.L. OR ITS SUPPLIERS SHALL NOT BE RESPONSIBLE FOR LOSS OF RECORDING DATA/INCOMES OR FOR CONSEQUENTIAL OR INCIDENTAL DAMAGE DUE TO NEGLECT OR RECKLESS MISHANDLING OF Z-10-D-IN, EVEN THOUGH SENECA IS WELL AWARE OF THESE POSSIBLE DAMAGES.

SENECA, ITS SUBSIDIARIES, AFFILIATES, COMPANIES OF THE GROUP, ITS SUPPLIERS AND RETAILERS SHALL NOT GUARANTEE THAT THE FUNCTIONS WILL SATISFY COMPLETELY CUSTOMER'S EXPECTATIONS OR THAT Z-10-D-IN, THE FIRMWARE AND THE SOFTWARE SHALL HAVE NO ERRORS OR WORK CONTINUOUSLY.

THIS MANUAL REFERS ONLY TO "HW2" Z-10-D-IN HARDWARE REVISION

FOR EARLY REVISION REFERS TO MI002533 MANUAL

1. Introduction

The Z-10-D-IN module acquires 10 single-ended digital signals, then converts them to a digital format (IN 1-10 state).

The supported communication protocol is Modbus RTU.

The following counters are available:

All 10 counters are in 32 bits format (backupped on a Not volatile RAM)

For all 10 inputs TON/TOFF/Frequency measures are available.

1.1. Features

- Acquisition of digital signals from sensor: Reed, NPN, PNP, Proximity, contact, etc...
- Counters are saved to a non volatile memory (NVM FeRAM)
- Input signals can be filtered
- 32 bits Pulse counters for digital signals, with max frequency < 2500 Hz
- Measure of Frequency / Period / Ton and Toff
- Advanced pulse management for digital signals
- Up to 10 sensors power by internal supply voltage (Vaux=16V)
- Node address and baud-rate configurable from Dip-Switches
- RS485 serial communication with MODBUS-RTU protocol

2. Features

INPUT	
Number	10
Input filter	Cut-off frequency configurable
Filter	Configurable
Protection	This module provides inputs and power supply (Vaux) protection against the overvoltage surge transient by transient suppressor TVS (600W/ms); max current supplied from Vaux is 100mA (limited by internal series PTC)
Sensor=closed	The sensor is detected «closed» if: acquired signal voltage >12 Vdc and acquired signal current > 3 mA
Sensor=open	The sensor is detected «open» if: acquired signal voltage <10 Vdc and acquired signal current < 2 mA
Internal supply Vaux	The screw terminal 12 (Vaux) supplies 16 V with reference to the screw terminal 1 (GND)

Measure error for frequency: 2% of measure +-1 Hz

Measure error for period, ton, toff:+- 1ms

CONNECTIONS	
RS485 interface	IDC10 connector for DIN 46277 rail (back-side panel)
ISOLATIONS	
1500 Vac	Between: power supply, ModBUS RS485, digital inputs

POWER SUPPLY	
Supply voltage	10 – 40 Vdc or 19 – 28 Vac (50Hz - 60Hz)
Power	Typ: 1.5W; Max: 2.5W
consumption	

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, is recommended to install a fuse.

3. Input connections

Power on the module with < 40 Vdc or < 28 Vac voltage supply. These upper limits must not be exceeded to avoid serious damage to the module.

4. Dip-switches table

Dip switch configuration is valid only at boot up.

BAUD	D-RATE	E (Dip-	Switch	es: DIF	P-SWIT	CH STATUS)						
1	2	Mean	Meaning									
OFF	OFF	Baud	-rate=9	600 Ba	ud							
OFF	ON	Baud	rate=1	9200 B	aud							
ON	OFF	Baud	-rate=3	8400 B	aud							
ON	ON	Baud	-rate=5	7600 B	aud							
ADDF	RESS (Dip-Sw	vitches	: DIP-S	SWITCH	H STATUS)						
3	4	5	6	7	8	Meaning						
OFF	OFF	OFF	OFF	OFF	OFF	Address and Baud-Rate are acquired from memory (EEPROM)						
OFF	OFF	OFF	OFF	OFF	ON	Address=1						
OFF	OFF	OFF	OFF	ON	ON	Address=2						
OFF	OFF	OFF	OFF	ON	ON	Address=3						
OFF	OFF	OFF	ON	OFF	OFF	Address=4						
-	-	-	-	-	-							
ON	ON	ON	ON	ON	ON	Address=63						
RS48	5 TERI	MINAT	OR (Di	p-Swite	ches: [DIP-SWITCH STATUS)						
9	10	Mean	ing									
OFF	OFF	RS48	5 termi	nator d	isabled	1						
OFF	ON	RS48	5 termi	nator e	nabled							

5. Counters Filter

The filter is applied to:

-Counters

-Frequency

-TON

-TOFF

-PERIOD

The Input values (register 40002) are not filtered.

The filter will cut frequency up to:

f[Hz] = 1000/T Filter[ms]

A pulse is filtered if its duration is > Tfilter/2.

In the following example the first 3 pulse are filtered because their duration is lower than Tfilter/2. The upgrading of the counter values is made after a rising edge and after Tfilter/2.

6. Modbus RTU Register Tables

In the following table this abbreviations are used:

MS = Most significant
LS = Less significant
MSW = Most significant Word (16 bits)
LSW = Less significant Word (16 bits)
R = Read only register
RW = Read and writeable register
RW* = registers in non-volatile memory writable infinite times
RW** = registers in non-volatile memory writable a maximum of 100000 times
Unsigned 16 bits = Unsigned 16 bits register (from 0 to 65535)
Signed 16 bits = 16 bits register with sign (from -32768 to +32767)
Float 32 bits = Floating point single precision 32 bits (IEEE 754) register
0x = Hexadecimal Value

Default communication parameters are 38400 baud, 8 bit data, parity None, 1 stop bit.

6.1. Bit Position Convention in the Holding Registers:

One Holding Register is composed by 16 bits with the following convention:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

For example, if the register decimal value is

12300

the binary value is:

0011 0000 0000 1100

So, using the Bit convention we obtain:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | O |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |

6.2. Modbus Holding Registers Addresses (function code 3):

All registers are "Holding register" (Read Modbus function 3) with the convention that the first register (offset 0) is the 40001 address.

The following Modbus functions are supported:

Read Modbus Register (function 3) Write Single Modbus Register (function 6) Write Multiple Modbus Registers (function 16)

All values in 32bits are stored into 2 consecutive registers

For more info refers to:

http://www.modbus.org/specs.php

Register Name	Comment	Register Type	R/W	Default value or Start Value	Modbus Address	Modbus Offset
MachinelD	Module ID code	Unsigned 16 bits	R	-	40001	0 O
Inputs	Digital inputs 110 status value (not filtered) Bit 0 (LSB) = IN1 status Bit 1 = IN2 status Bit 2 = IN3 status Bit 3 = IN4 status Bit 4 = IN5 status Bit 5 = IN6 status Bit 6 = IN7 status Bit 7 = IN8 status Bit 8 = IN9 status Bit 9 = IN10 status Bit 1014 = not used Bit 15 (MSB) = not used For example if the register value is: 813 decimal = (MSB)0000 0011 0010 1101(LSB) binary IN1 = 1 IN2 = 0 IN3 = 1 IN4 = 1 IN5 = 0 IN6 = 1	Unsigned 16 bits	R	0	40002	1
	IN0 = 1 IN7 = 0 IN8 = 0 IN9 = 1 IN10 = 1					
First 16 bit Counter 1	16 bit counter (from 0 to 65535) The value is stored into a non volatile RAM (FeRAM). The Counter 1 value can be written (for example writing 0 for setting the counter)	Unsigned 16 bits	R/W**	-	40003	2
First 16 bit Counter 2	16 bit counter (from 0 to 65535) The value is stored into a non volatile RAM (FeRAM). The Counter 2 value can be written (for example writing 0 for setting the counter)	Unsigned 16 bits	R/W**	-	40004	3

First 16 bit Counter 3	16 bit counter (from 0 to 65535) The value is stored into a non	Unsigned 16 bits	R/W**	-	40005	4
	volatile RAM (FeRAM). The Counter 3 value can be					
	written (for example writing 0					
First 16 bit	16 bit counter (from 0 to	Unsigned	R/W**	-	40006	5
Counter 4	65535) The value is stored into a pen	16 bits				
	volatile RAM (FeRAM).					
	The Counter 4 value can be					
	for setting the counter)					
First 16 bit	16 bit counter (from 0 to	Unsigned	R/W**	-	40007	6
Counter 5	65535) The value is stored into a non	16 bits				
	volatile RAM (FeRAM).					
	The Counter 5 value can be					
	for setting the counter)					
First 16 bit	16 bit counter (from 0 to	Unsigned	R/W**	-	40008	7
Counter 6	The value is stored into a non	16 DIts				
	volatile RAM (FeRAM).					
	The Counter 6 value can be					
	for setting the counter)					
First 16 bit	16 bit counter (from 0 to	Unsigned	R/W**	-	40009	8
Counter 7	The value is stored into a non	TO DILS				
	volatile RAM (FeRAM).					
	written (for example writing 0					
	for setting the counter)					
First 16 bit Counter 8	16 bit counter (from 0 to	Unsigned 16 bits	R/W**	-	40010	9
	The value is stored into a non					
	volatile RAM (FeRAM).					
	written (for example writing 0					
	for setting the counter)	11			40044	40.44
Counter 9	4294967295)	32 bits	R/W	-	(MSW)	10-11
	The value is stored into a non				40012	
	The Counter 9 value can be				(LSVV)	
	written (for example writing 0					
Full 32 bit	for setting the counter)	Unsigned	R/W**	-	40013	12-13
Counter 10	4294967295)	32 bits			(MSW)	
	The value is stored into a non volatile RAM (FeRAM)				40014 (LSW)	
	The Counter 10 value can be					
	written (for example writing 0					
	ior setting the counter)					

16 bits only Counters Overflow Flags	The flag is "1" if the first 16 bits of the counter has performed an overflow Bit 0 (LSB)= Overflow Counter 1 Bit 1 = Overflow Counter 2 Bit 2 = Overflow Counter 3 Bit 3 = Overflow Counter 4 Bit 4 = Overflow Counter 4 Bit 5 = Overflow Counter 5 Bit 5 = Overflow Counter 7 Bit 7 = Overflow Counter 7 Bit 7 = Overflow Counter 7 Bit 8 = Overflow Counter 8 Bit 8 = Overflow Counter 9 Bit 9 = Overflow Counter 10 Bit 1014 = not used Bit 15 (MSB) = not used	Unsigned 16 bits	R/W	0	40015	14
Measure B	Input B measure value Measure units: Ton/Toff/Period [ms] Frequency [Hz]	Unsigned 16 bits	R	0	40016	15
Measure A	Input A measure value Measure units: Ton/Toff/Period [ms] Frequency [Hz]	Unsigned 16 bits	R	0	40017	16
Measure A/B Type	Bit $[1512]$ = 0b0000 Measure A frequency Bit $[1512]$ = 0b0001 Measure A period Bit $[1512]$ = 0b0010 Measure A Ton Bit $[1512]$ = 0b0011 Measure A Ton Bit $[1512]$ = 0b0011 Measure A Ton Bit $[118]$ = 0b0011 Measure A from input 1 Bit $[118]$ = 0b0010 Measure A from input 2 Bit $[118]$ = 0b0011 Measure A from input 3 Bit $[118]$ = 0b0100 Measure A from input 4 Bit $[118]$ = 0b0101 Measure A from input 5 Bit $[118]$ = 0b0110 Measure A from input 5 Bit $[118]$ = 0b0111 Measure A from input 5 Bit $[118]$ = 0b0110 Measure A from input 5 Bit $[118]$ = 0b0111 Measure A from input 7 Bit $[118]$ = 0b1000 Measure A from input 8 Bit $[118]$ = 0b1001	Unsigned 16 bits	R/W*	0	40018	17

	Measure A from input 9 (only frequency) Bit[118] = 0b1010 Measure A from input 10 (only frequency)					
	Bit $[74] = 0b0000$ Measure B frequency Bit $[74] = 0b0001$ Measure B period Bit $[74] = 0b0010$ Measure B Ton Bit $[74] = 0b0011$ Measure B Toff					
	Bit[30] = 0b0001 Measure B from input 1 Bit[30] = 0b0010 Measure B from input 2 Bit[30] = 0b0011 Measure B from input 3 Bit[30] = 0b0100 Measure B from input 4 Bit[30] = 0b0101 Measure B from input 5 Bit[30] = 0b0110 Measure B from input 6 Bit[30] = 0b0111 Measure B from input 7 Bit[30] = 0b1000 Measure B from input 8 Bit[30] = 0b1001 Measure B from input 8 Bit[30] = 0b1001 Measure B from input 9 (only frequency) Bit[30] = 0b1010 Measure B from input 10 (only frequency)					
FILTER	Filter value from 1 ms to 65535 ms (valid for all 10 inputs) For example with filter = 1 ms cutoff frequency = 1/1ms = 1000 Hz With filter = 20 ms cutoff frequency = 1/20ms=50 Hz Use value 0 for disable the filter. For more info see chapter 5	Unsigned 16 bits	R/W*	3 ms (enabled for all 10 inputs)	40019	18
IN9IN10 COUNT MODE / RS485 PARITY	Bit [12:8] = 0b00000 IN9 Upcounter IN10 Upcounter Bit [12:8] = 0b00001 IN9 Downcounter IN10 Upcounter	Unsigned 16 bits	R/W*	0	40020	19

					-	
	Bit [12:8] = 0b00010 IN9 Upcounter IN10 Downcounter					
	Bit [12:8] = 0b00100 IN9 Downcounter IN10 Downcounter					
	Bit [12:8] = 0b01000 Count+1 from IN9 and Count-1 from IN10. Only Count 9 Is active					
	Bit [12:8] = 0b10000 if IN10=1 Count9 Upcounter, if IN10=0 Counter9 Downcounter					
	Bit[4] = 0 Port RS485 Parity Even Bit[4] = 1 Port RS485 Parity Odd					
	Bit[3] = 0 Port RS485 Parity Not Active Bit[3] = 1 Port RS485 Parity Active					
	Bit[2] = 0 Delay Between Rs485 Port TX and RX disabled Bit[2] = 1 Delay Between Rs485 Port TX and RX enabled					
	Bit[1] = 0 IN1IN8 Upcounter Bit[1] = 1 IN1IN8 Downcounter					
	Bit[0] = 0 IN1IN10 Normal Logic Bit[0] = 1 IN1IN10 Reverse Logic					
ADDRESS BAUDRATE	Bit[158] = 0b00000000000000000000000000000000000	Unsigned 16 bits	R/W*	0b000001000000 0001 (38400 baud, station address 1)	40021	20
	Bit[158] = 0b00000111					

	RS485 use 2400baud					
	Bit[7:0] = Station Node					
	Address (if all dip switched					
	are set to OFF)					
COMMAND	If set to	Unsigned	R/W	0	40022	21
••••••	1: Copy the actual contents	16 bits		Ŭ	10022	
	of registers R/W* into					
	EEPROM.					
	2: Perform a Reset					
	Fw build revision	Unsigned	R		40023	22
		16 bits			40020	22
FW REVISION	Fw internal code	Unsigned	R	-	40024	23
		16 bits				
32 bit Counter	Full 32 bit Counter 1 Value	Unsigned	RW**	0	40101	100-101
1		32 bits			(MSW)	
					40102	
32 bit Counter	Full 32 bit Counter 2 Value	Unsigned	R\//**	0	40103	102-103
2		32 bits	1	Ŭ	(MSW)	102-100
_					40104	
					(LSW)	
32 bit Counter	Full 32 bit Counter 3 Value	Unsigned	RW**	0	40105	104-105
3		32 bits			(MSW)	
					40106	
32 bit Countor	Full 22 bit Counter 4 Value	Unsigned	D\\/**	0	(LSVV) 40107	106 107
	Full 52 bit Counter 4 Value	32 hits		0	(MSW)	100-107
-		02 013			40108	
					(LSW)	
32 bit Counter	Full 32 bit Counter 5 Value	Unsigned	RW**	0	40109	108-109
5		32 bits			(MSW)	
					40110	
32 bit Counter	Full 32 bit Counter 6 Value	Unsigned	D\\/**	0	(LSVV) 40111	110 111
6		32 hits	1.1.1	0	(MSW)	110-111
•		02 510			40112	
					(LSW)	
32 bit Counter	Full 32 bit Counter 7 Value	Unsigned	RW**	0	40113	112-113
7		32 bits			(MSW)	
					40114	
32 bit Countor	Full 32 bit Counter 8 Value	Unsigned	D\\/**	0	(LSVV) 40115	11/ 115
8	Full 52 bit Counter o value	32 hits		0	(MSW)	114-115
Ū		02 510			40116	
					(LSW)	
32 bit Counter	Full 32 bit Counter 9 Value	Unsigned	RW**	0	40117	116-117
9		32 bits			(MSW)	
					40118	
32 hit Counter	Full 22 bit Counter 10 Value	Uncigned	D\\/**	0	(LSVV)	119 110
10		32 hits		0	(MSW)	110-119
		02 510			40120	
					(LSW)	
Period Input 1	Input 1 Period [ms]	Unsigned	R	0	40121	120
	Period = Ton + Toff	16 bits				
Period Input 2	Input 2 Period [ms]	Unsigned	R	0	40122	121

	Period = Ton + Toff	16 bits				
Period Input 3	Input 3 Period [ms] Period = Ton + Toff	Unsigned 16 bits	R	0	40123	122
Period Input 4	Input 4 Period [ms] Period = Ton + Toff	Unsigned 16 bits	R	0	40124	123
Period Input 5	Input 5 Period [ms] Period = Ton + Toff	Unsigned 16 bits	R	0	40125	124
Period Input 6	Input 6 Period [ms] Period = Ton + Toff	Unsigned 16 bits	R	0	40126	125
Period Input 7	Input 7 Period [ms] Period = Ton + Toff	Unsigned 16 bits	R	0	40127	126
Period Input 8	Input 8 Period [ms] Period = Ton + Toff	Unsigned 16 bits	R	0	40128	127
Period Input 9	Input 9 Period [ms] Period = Ton + Toff	Unsigned 16 bits	R	0	40129	128
Period Input 10	Input 10 Period [ms] Period = Ton + Toff	Unsigned 16 bits	R	0	40130	129
Frequency	Input 1 Frequency [Hz]	Unsigned 16 bits	R	0	40131	130
Frequency	Input 2 Frequency [Hz]	Unsigned 16 bits	R	0	40132	131
Frequency Input 3	Input 3 Frequency [Hz]	Unsigned 16 bits	R	0	40133	132
Frequency Input 4	Input 4 Frequency [Hz]	Unsigned 16 bits	R	0	40134	133
Frequency Input 5	Input 5 Frequency [Hz]	Unsigned 16 bits	R	0	40135	134
Frequency Input 6	Input 6 Frequency [Hz]	Unsigned 16 bits	R	0	40136	135
Frequency Input 7	Input 7 Frequency [Hz]	Unsigned 16 bits	R	0	40137	136
Frequency Input 8	Input 8 Frequency [Hz]	Unsigned 16 bits	R	0	40138	137
Frequency Input 9	Input 9 Frequency [Hz]	Unsigned 16 bits	R	0	40139	138
Frequency Input 10	Input 10 Frequency [Hz]	Unsigned 16 bits	R	0	40140	139
T ON Input 1	Input 1 High Time [ms]	Unsigned 16 bits	R	0	40141	140
T ON Input 2	Input 2 High Time [ms]	Unsigned 16 bits	R	0	40142	141
T ON Input 3	Input 3 High Time [ms]	Unsigned 16 bits	R	0	40143	142
T ON Input 4	Input 4 High Time [ms]	Unsigned 16 bits	R	0	40144	143
T ON Input 5	Input 5 High Time [ms]	Unsigned 16 bits	R	0	40145	144
T ON Input 6	Input 6 High Time [ms]	Unsigned 16 bits	R	0	40146	145
T ON Input 7	Input 7 High Time [ms]	Unsigned 16 bits	R	0	40147	146
T ON Input 8	Input 8 High Time [ms]	Unsigned 16 bits	R	0	40148	147
T ON Input 9	Input 9 High Time [ms]	Unsigned 16 bits	R	0	40149	148
T ON Input 10	Input 10 High Time [ms]	Unsigned 16 bits	R	0	40150	149
T OFF Input 1	Input 1 Low Time [ms]	Unsigned 16 bits	R	0	40151	150
T OFF Input 2	Input 2 Low Time [ms]	Unsigned	R	0	40152	151

		16 bits				
T OFF Input 3	Input 3 Low Time [ms]	Unsigned 16 bits	R	0	40153	152
T OFF Input 4	Input 4 Low Time [ms]	Unsigned 16 bits	R	0	40154	153
T OFF Input 5	Input 5 Low Time [ms]	Unsigned 16 bits	R	0	40155	154
T OFF Input 6	Input 6 Low Time [ms]	Unsigned 16 bits	R	0	40156	155
T OFF Input 7	Input 7 Low Time [ms]	Unsigned 16 bits	R	0	40157	156
T OFF Input 8	Input 8 Low Time [ms]	Unsigned 16 bits	R	0	40158	157
T OFF Input 9	Input 9 Low Time [ms]	Unsigned 16 bits	R	0	40159	158
T OFF Input 10	Input 10 Low Time [ms]	Unsigned 16 bits	R	0	40160	159

6.3. Modbus Coil Registers Addresses (function code 1):

Register Name	Comment	Register Type	R/W	Default value or Start Value	Modbus Address	Register Offset
Input 1	Input 1 Value	Bit	R	0	1	0
Input 2	Input 2 Value	Bit	R	0	2	1
Input 3	Input 3 Value	Bit	R	0	3	2
Input 4	Input 4 Value	Bit	Bit R O		4	3
Input 5	Input 5 Value	Bit	R	0	5	4
Input 6	Input 6 Value	Bit	R	0	6	5
Input 7	Input 7 Value	Bit	R	0	7	6
Input 8	Input 8 Value	Bit	R	0	8	7
Input 9	Input 9 Value	Bit	R	0	9	8
Input 10	Input 10 Value	Bit	R	0	10	9

6.4. Modbus Input Registers (read only) Addresses (function code 2):

Register Name	Comment	Register Type	R/W	Default value or Start Value	Modbus Address	Register Offset
Input 1	Input 1 Value	Bit	R	0	10001	0
Input 2	Input 2 Value	Bit	R	0	10002	1
Input 3	Input 3 Value	Bit	R	0	10003	2
Input 4	Input 4 Value	Bit	R	0	10004	3
Input 5	Input 5 Value	Bit	R	0	10005	4
Input 6	Input 6 Value	Bit	R	0	10006	5
Input 7	Input 7 Value	Bit	R	0	10007	6
Input 8	Input 8 Value	Bit	R	0	10008	7
Input 9	Input 9 Value	Bit	R	0	10009	8
Input 10	Input 10 Value	Bit	R	0	10010	9

7. FULL configuration with EASY SETUP

For configure all the device parameters you can use the RS485 Port (with a Seneca RS485 to USB converter) and the "Easy Z-10-D-IN HW2" software included in the Easy Setup Suite.

You can download the Easy Setup software for free from:

https://www.seneca.it/en/linee-di-prodotto/software/easy/easy-setup

Easy Setup Menu

Connect: Use the connect icon for connect the PC to the Device.

New: Load the default parameters in the actual project

Open: Open a stored project

Save: Save the actual project

Read: Read the actual configuration from the device (if the dip switches are not ALL OFF the configuration is read from dip switches)

Send: Send the project configuration (if the dip switches are NOT ALL OFF the device use the dip switch configuration and NOT the sent configuration)

Test: Start a Registers read, open the Datalogger or send command to the device

7.1. Creating a Project Configuration

S FASY 7-10-D-IN ver 1.0.0.0	_		×						
File Language		_							
CONVECT REW OPEN READ VIRITE TEST	S S AUTOMATIO	ENEC N INTERF	Å						
Z-10-D-IN									
RS485 Modbus Slave Port Station Address 1 Enable Parity OFF	~								
Baud Rate 38400 V Parity EVEN	\sim								
Response Delay NO V									
Inputs / Counters Configuration									
Inputs Type NORMAL V Counters 110 Filter 0 + ms Cut freque	ency =	2500,0	Hz						
Input 18 Counters Mode UPCOUNTER ~									
Input 910 Counters Mode INPUT 9 UPCOUNTER INPUT 10 UPCOUNTER		\ \	1						
N.B. For a valid Modbus Slave configuration, you must restart the device with SW1 dip switches from 1 to 8 in OFF state: 1 2 3 4 5 6 7 8									
Disconnect	<	>							

The parameters that can be configured are:

RS485 MODBUS SLAVE PORT

Station Address: Select The Modbus RTU station address for the RS485 Port

Baud Rate: Select the Baud rate from 2400 to 115200 baud for the RS485 Port

Enable Parity: Select between Enable or Disable if Enable you must select ODD or Even Parity for the RS485 Port.

Response Delay: Select to add about 10 ms to a Modbus RTU query response.

INPUTS/COUNTERS CONFIGURATIONS

Inputs Type: Select between Normal or Inverted

Counters Filter: Select the filter to be applied to all the 10 Counters. Insert the value in steps of 1 ms.

The Filter is a low pass filter with cut frequency calculated from the software.

If Counter Filter = 0 the Filter is disabled.

Input Counter Mode 1..8 : Select between UPCOUNTER or DOWNCOUNTER.

Input Counter Mode 9..10 : Select between:

IN9/IN10 COUNTER 9/10 UPCOUNTER/DOWNCOUNTER

IF IN9 IS HIGH THEN COUNTER 10 UPCOUNTER, IF IN9 IS LOW THEN COUNTER 10 DOWNCOUNTER

IF IN9/10 IS HIGH THEN COUNTER 9/10 UPCOUNTER, IF IN9/10 LOW THEN COUNTER 9/10 DOWNCOUNTER

If the counter is set in "Upcounter" when reach the 4294967295 (that means $2^{32}-1$)

a pulse to the counter will bring the value to 0

If the counter is set in "Downcounter" and the value is 0 then a pulse will bring the value to 4294967295 (that means $2^{32} - 1$)

7.2. Testing the Device

When the configuration is sent to the device you can test the actual configuration by using the 🔛 icon:

S Z-10-D-IN Te	st								-	
INPUT 1	False	FREQUENCY IN1	0	Hz	T HIGH IN1	0	ms	T LOW IN1	0	ms
INPUT 2	False	FREQUENCY IN2	0	Hz	T HIGH IN2	0	ms	T LOW IN2	0	ms
INPUT 3	False	FREQUENCY IN3	0	Hz	T HIGH IN3	0	ms	T LOW IN3	0	ms
INPUT 4	False	FREQUENCY IN4	0	Hz	T HIGH IN4	0	ms	T LOW IN4	0	ms
INPUT 5	False	FREQUENCY IN5	0	Hz	T HIGH IN5	0	ms	T LOW IN5	0	ms
INPUT 6	False	FREQUENCY IN6	0	Hz	T HIGH IN6	0	ms	T LOW IN6	0	ms
INPUT 7	False	FREQUENCY IN7	0	Hz	T HIGH IN7	0	ms	T LOW IN7	0	ms
INPUT 8	False	FREQUENCY IN8	0	Hz	T HIGH IN8	0	ms	T LOW IN8	0	ms
INPUT 9	False	FREQUENCY IN9	0	Hz	T HIGH IN9	0	ms	T LOW IN9	0	ms
INPUT 10	False	FREQUENCY IN10	0	Hz	T HIGH IN10	0	ms	T LOW IN10	0	ms
COUNTER 1		1000		0	•	SET				
	c	COUNTER 2	1000		0		SET			
	C	COUNTER 3	1000		0	•	SET			
	C	COUNTER 4	1000		0	-	SET	Running		
	C	COUNTER 5	1000		0	•	SET	Enable datalogger (seconds)		conds)
	C	COUNTER 6	1000		0	•	SET	1 seconds V		\sim
COUNTER 7		1000		0		SET	O;	oen last log		
	COUNTER 8		1000		0	•	SET	Op	en log folder	
	C	COUNTER 9	1000		0	-	SET			
	C	COUNTER 10	1000		0	÷	SET			
							Stop		Annulla	

The test configuration will acquire the measure from the Modbus registers, you can also load/reset the counters

7.2.1. The datalogger

The datalogger can be used for acquire data that can be used with an external software (for example Microsoft Excel [™]). It is possible to set how much time to acquire the samples (minimum 1 second).

The datalogger will create a file in a standard .csv format that can be open also with Microsoft Excel ™.